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1 Einfithrung zur Simulationstechnik

1 Einfithrung zur Simulationstechnik

Simulationstechnik kann wesentlich als eine Methodik bezeichnet werden, mit der man das
Problem des dynamischen Systems mithilfe unterschiedlicher numerischer Verfahren 16sen
und analysieren kann.

In Mathematik und Physik bezeichnet ein dynamisches System ein Modell, das beschreibt, wie
sich ein System im Laufe der Zeit entwickelt. Es besteht aus Zustandsvariablen und einer
Entwicklungsvorschrift (oft in Form von Gleichungen). Formal unterscheiden sie sich von
kontinuierlichem dynamischen System und diskretem dynamischen System:

Inzwischen enthélt ein dynamisches System 4 zentrale Elemente:

« Zustandsraum (state space): die Menge aller mgglichen Zustande

+ Entwicklungsgesetz: gegeben durch Differentialgleichungssysteme oder Iterationsab-
bildungen

« Bahnen/Phasentrajektorien: die Trajektorien, die das System ausgehend von einem
Anfangszustand im Zeitverlauf beschreibt

* Gleichgewichtspunkte, Grenzzyklen, Attraktoren

Numerische Verfahren sind Lésungsmethoden fiir die meisten komplizierten Differenzialglei-
chungssysteme. Vor allem nutzt man MATLAB und Simulink, um das Modell zu analysieren.

1.1 Algebraisches Gleichungssystem (AE)

In algebraischen Gleichungen treten die Unbekannten nur durch algebraische Operationen
(Addition, Subtraktion, Multiplikation, Division, Potenzierung) auf und beinhalten weder Ablei-
tungen noch Integrale.

1.2 Differentiales Gleichungssystem (ODE)

In Differentialgleichungen ist die Unbekannte eine Funktion, und in der Gleichung treten die
Ableitungen dieser Funktion auf. In Differentialgleichungen entwickeln sich alle Variablen
durch Ableitungen. Differentialgleichungssysteme umfassen 4 zentrale Kennzeichen:

« Anzahl der unabhingigen Variablen:
Gewohnliche Differentialgleichung (ODE, ordinary differential equation, einer unab-
hingigen Variablen)
Partielle Differentialgleichung (PDE, partial differential equation, mehrere unabhingi-
ge Variablen)
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* Linearitat:
Lineare Differentialgleichung (die unbekannte Funktion und ihre Ableitungen treten
nur in der ersten Potenz auf und werden nicht miteinander multipliziert)
Nichtlineare Differentialgleichung

« Ordnung (die Ordnung der héchsten Ableitung)

+ Homogenitit:
Homogen (wenn die rechte Seite null ist, das heif3t, keine unabhédngigen Terme)
Inhomogen

1.3 Differential-algebraisches Gleichungssystem (DAE)

In differential-algebraischen Gleichungen entwickeln sich einige Variablen durch Ableitungen,
wihrend andere Variablen algebraischen Beschriankungen unterliegen.

1.4 Losungsmethode

Losungsverfahren umfassen 2 Verfahren, jeweils analytische Verfahren (exakte Darstellung
der Lsung mit Formeln, elementaren oder speziellen Funktionen) und numerische Verfahren
(Ndherungslosungen durch Computer oder iterative Algorithmen). In der Simulationstechnik
werden numerische Verfahren hauptsachlich untersucht.

Numerische Verfahren (Iterationsverfahren) umfassen 3 Verfahren:

« Einschrittverfahren (Runge-Kutta-Verfahren):
Euler-Vorwirts
Euler-Riickwirts
Mittelwert
Reun

« Mehrschrittverfahren

« Extrapolationsverfahren
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2 Numerische Verfahren von gewohnlichen
Differentialgleichungen

Gewdhnliche Differenzialgleichungen (ODE) kénnen durch die unten genannte Gleichung mit
Anfangsbedingungen definiert werden:

x = F(x,t) mit xo=x(t)) € R",t € R" (1)

Wenn diese Gleichungen lineare gewdhnliche Differenzialgleichungen sind, kénnen sie in
folgender Form dargestellt werden:

x = Ax+ Bu(t) mit xg=x(t)) € R",t € R" (2)

Es ist in der Regel notwendig, Systeme hoherer linearer Differentialgleichungen in Systeme
erster linearer Differentialgleichungen zu reduzieren:

Dgln. in n. Ordnung + n. ABu. <+ n. Dgln. in 1. Ordnung + n. ABu.

Beispiel: Lineare Differentialgleichungen reduzieren (1)

Originale Differentialgleichung:
i = —20woy — wgy + ngu mit ABu:yy = y(to), y1 = y(to)
Zustandsvariablen definieren:

Ty = mit ABu: l‘l(to) =%
Ty =9 mit ABu:z(to) =1

Umrechnen zur Simulationsgleichung:

Ty = fi(wy, m2,u,t) 0 2y =Y =10
Ty = fo(xy, To,u,t) : 2o = § = —20wel — wiy + Kwiu = —26wozs — wizy + Kwiu
.Z:l . 0 1 T + 0 u
./1::2 o —wg —25(,00 i) K(A)(Q)
. ~ - N’
A B

Darstellung von der Matrix A:

9h Of oft
o0z Ozrs =~ OTn

A= U= "0 o o (3)
oz Oxo OTn
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Inzwischen definiert man die Funktion f; mit 7 € 1,2,...,n in folgender Form:
iI:’i = fi(l'l, T2,...,Tp, U(t), t) bzw. l’l = fi(X, t) (4)

Beispiel: Lineare Differentialgleichungen reduzieren (2)
Originale Differentialgleichung:
J=ay+by+ci+di+eu mit ABu:yo=1y(to), y1 = y(to) uo = u(ty), ur = u(to)

Sukzessive Integration zur 1. Ordnung u:
/j/'d:r;—y—cu+ay+du+/(by+eu)da:
/ydx:y:cu+/(ay+du+/(by+eu)dx)dx

Zustandsvariablen definieren:
x = /(by +eu)dr mit ABu:zi(ty) = y1 — cup — ayo — dug
Ty = /(ay +du+ z1)de mit ABu:zy(ty) = yo — cuo
Y = Cu+ Ty
Umrechnen zur Simulationsgleichung:

21 = fi(zy, 0, u,t) : 2 = by+eu = bxg + (be+ e)u
Ty = fo(x1, T, u,t) 1 X9 = ay + dutz1 = 21 + azxs + (ac + d)u

Zi| |0 b |2 n bc+e
ZL:Q |1 a i) ac + d u
A B

Voraussetzungen: Existenz und Eindeutigkeit der Losung x(¢),¢ > 0

« Existenz: f(x) stetig

» Eindeutigkeit: || f(x;) — f(z2)|| < L||x; — 23] mit L < oo

Falls f(z) stetig differenzierbar, dann sind beide Bedingungen erfiillt.
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2.1 Modellanalyse von gewohnlichen Differentialgleichungen
2.1.1 Stationidre Losung (Losen eines Systems algebraischer Gleichungen)
Definition zur stationdren Losung x:
%y = F(x4,t;) =0 (5)

Obige Gleichung ist algebraische Gleichung. Numerische Bestimmung von x, durch (i) exakte
Elimination oder (ii) ndherungsweise Losung. Wenn f(x;,t;) = 0 nichtlineare algebrai-
sche Gleichungen vorliegen, kann die numerische Bestimmung x, durch Newton-Verfahren
erfolgen. Wenn f(xs,ts) = 0 lineare algebraische Gleichungen vorliegen, kénnen sie in der
folgenden Form dargestellt werden.

Ax=b bzw. x=A"'b (6)

Stationidre Losung fiir lineare algebraische Gleichungen
(i) Exakte Elimination: GauR-Elimination

» Dreieckszerlegung von A = LR:

a1 a2 ... A1n T 1 0 M1 Ti12 ... T1n X1 b1
21 Q92 ... (QA2p i) 121 1 Tog ... Ton i) bg
Ap1 Gp2 ... Qupn| |Zn lyg L ... 1 0 Ton | | Zn by,
g N >
vV vV vV
A L R

Multiplikationszahlen: S"1"i% =~ n?/3

« Vorwirtssubstitution (z = L~ 'b):

1 0] |z by
logy 1 22 by
lnl ln? 1 Zn bn

b

Multiplikationszahlen: 37" i ~ n?/2

« Riickwirtssubstitution (x = R~'z):

M1 Ti12 ... T1n I Z1
Tog ... Top i) z9
0 Tmn | |Zn Zn
N ~~ g
R
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n

Multiplikationszahlen: $"7""i ~ n?/2
Gesamtsmultiplikationszahlen: n? 4+ n?/3 < (n + 1)"n! (Cramer-Regel)
(ii) Naherungsweise Losung: Iterationsverfahren
Xiv1 = P(x;) mit i=0,1,...,m xo= Startwert
Zum Beispiel die Fixpunktsgleichung (Richardson-Verfahren):
Ax=boex=(I,-A)x+bex,; =1, —-A)x,+b

Eine detailliertere Analyse befindet sich in Abschnitt 2.2.1.
Stationire Lsung fiir nichtlineare algebraische Gleichungen
Losungsarten:

1 Einfache reelle Losung (det(2£| ) # 0)

Xs

oF | [0=12,.k—1
(% |, )

2 k-fache reelle Lsung = 0.k

3 Zwei reelle Losungen (von Startwert und von Parameter abhingig)

4 Keine reelle Losung

) @ ©) @

(ii) Ndherungsweise Losung: Newton-Verfahren
Losung der Aufgabe mittels Taylor-Reihe in der Umgebung von x:

OF

F(x) =F(x0) + -~ XO(X —Xg) =0
X1 =Xg — <?9_Z XO)_lf(Xo)

6_F
ox

[terationsvorschritt :  x;.1 = x; — (

Xi

Eine detailliertere Analyse befindet sich in Abschnitt 2.2.1.

7

(7)

(8)

(9)

(10)

>_f(xz-) mit ¢=0,1,...,m (11)
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2.1.2 Linearisierung am stationiren Punkt

Wenn man nichtlineare gew6hnliche Differentialgleichungen analysiert, wird sie an dem sta-
tiondren Punkt linearisiert werden. Betrachtung in der Umgebung der stationdren Losung:

x =%, +Ax =0+ Ax (13)
. 1.Taylor am xs oF
x = F(xs + Ax) =" TF(xs) + o Ax + O9(Ax) (14)
X =X
X=Xs
A
Ax = A(xs)Ax mit Axy = Xg — Xs (15)

Eigenschaften von Jacobimatrix A(xs): dense (mehrere Element # 0) und diinn (seltene Ele-
ment # 0) besetzte Matrizen.

2.1.3 Analytische Losung eines Systems linearer Differentialgleichungen

Gl. 15 ist das homogene System linearer Differentialgleichungen. Allgemeine Lésung kann
durch die folgende Gleichung dargestellt werden:

k
(16)

Ax(t) = e Axy, e = Z <ii)
k=0 ’

wobei A € R™™ eine konstante Matrix ist. Da A* sehr schwer zu berechnen ist, wird es zuerst
diagonalisiert.

Darstellung mit Eigenwerten und Eigenvektoren: Angenommen, A ist diagonalisierbar:
A=VAVL AP =VAFV! (17)

wobei A = diag(A1, Ag, . . ., A,) die Eigenwerte enthdlt, V' = [vq, v, ..., v,] die Eigenvekto-
renmatrix ist. Eigenwerte \; konnen durch det(A — AI) = 0 berechnet werden. Eigenvekto-
renmatrix v; konnen durch (A — \;I)v; = 0 berechnet werden.

Dann gilt:
At = ey 1 oA = diag(eMt, et ,eA"t) (18)
Ax(t) = i ety (19)
i=1
C = V_lAXO (20)

wobei die Koeffizienten ¢; durch die Anfangsbedingung Ax(0) = Ax, bestimmt werden wie
Gl. 20. Besondere Fille:
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« Mehrfacher Eigenwert: Man bendtigt verallgemeinerte Eigenvektoren, und die Lésung
kann Terme wie te* enthalten.

« Komplexe Eigenwerte: Die Losung enthdlt Sinus- und Kosinusfunktionen:

eleEB — e (cos Bt + i sin Bt) (21)
Eigenwerte analysieren
In einem komplexen Koordinatensystem werden die Eigenwerte markiert. Wenn \; < 0 ist,

handelt es sich um eine stabile Losung. Enthalten die Eigenwerte einen imaginaren Teil, handelt
es sich um eine periodische Losung. Wie in der folgenden Abbildung dargestellt.

Stabile Im{A} Instabile

Re{\}

Bestimmung von Simulationszeit

+ Zeitkonstante oder Periode:

1 27
T, = min { , } (22)
[Re{A:}| " [Tm{\; }|
Tmax = ._Iln2ax {E} (23)
» Steifigkeitsmal:
T,
= 1% > 10% ~ 107 24
’y Tmin ( )
+ Simulationszeit:
tsim = 5Tmax (25)
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+ Zeitschrittweite:

hNumerik = min {Tliom,%} (26)
hGraphik = % (27)

¢ Rechnenzeit:
foim ST _ 50y > 50 - 10 (28)

hNumerik B ,—Tmin/10

Problem (i): Steife Differentialgleichungen:

Eigenschaft: weit liegende Zeitkonstanten T; bzw. sehr groRer Unterschied zwischen T}, und
Tmin, 7 >> 1. Infolgedessen ist die Rechenzeit zu grof3.

5 (1)

X

X2

i I 1t

Abhilfe: Variable Zeitschrittweite i (graduell weiter die Zeitschrittweite).
Problem (ii): Unstetige u(¢) oder f(x):

! (i)

Abhilfe: Erkennen der Unstetigkeitsstelle und Versuchen, stiickweise numerische Losung mit
neuen Anfangsbedingungen.

10
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Beispiel: Analytische Losung eines 2 x 2 Systems linearer Differentialgleichungen

Betrachten wir das System:
. 2 1 3
x=Ax, A= L 2} , x(0) = L} .

Eigenwerte berechnen

Die Eigenwerte \ erfiillen:
det(A — \I) =0

92—
=>)\1:1, )\2:3

2—Xx 1
@t{l A}:@—A)?q:o

Eigenvektoren bestimmen

o Flir \; = 1:
11 1
(A—I)V:|:1 1}v:():>v1:[ 1}
e Flir \y = 3:
A-3v=|"" Llv=0= v=
VSl Yo V2T
Eigenvektormatrix

Koeffizienten ¢; berechnen
Aus der Anfangsbedingung x, = {ﬂ folgt: c = V1%,

11 -1
R . B P . f— _1 = —_—
det(V)=1-1—(=1)-1=2, V 2 1 1}

171 —1][3] [1]
R _
4 M_QL 1]L] &

Analytische Lésung
At Aot 1 ]' 3t 1
x(t) = e’'vy + e™ve =16 1 +2-e 1

et _'_ 2€3t
X<t) = |:_6t + 2¢3t

11
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2.2 Numerische Verfahren

Das Wesen der numerischen Methoden besteht darin, durch Approximation und Diskreti-
sierung kontinuierliche und méglicherweise nicht exakt 16sbare Probleme in Ndherungsrech-
nungen mit endlichen Schritten zu iiberfiihren und ihre Zuverlassigkeit durch Fehleranalyse
sicherzustellen.

2.2.1 Numerische Fehleranalyse algebraischer Gleichungssysteme

Rundungsfehler
I \}
Eingabe Resultit

x + Ax y(x) + Ay
| |

| | [ ]
N N2
Rundungsfehler Exakte Rechnung und Lsungen

Dabei wird die numerische Losung mit Rundungsfehlern dargestellt als:

2 =rd{z} [f*=rd{f(x)} (29)
Relativer Fehler ist:
0y = i df = ‘f _ff < eps (Genauigkeit) (30)
x
u+Adu v+AaAv flu+Adu v+ A4v)
Eingabemenge Ergebnismenge
f(u+ Au,v + Av) HTeytoram (1) f(u,v)+ 9f Au + 2 Av (31)
ou (w0) ov (w0)
Absolu;g Fehler
flu+ Au,v + Av) — f(u,v) fuAu fo Av fu fo
0 = = U=t v=— =u—0, +v—=190, (32)
! f(u,v) fu' foo O f f
K K

12
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s T

K<1 K>1
gut schlecht

Beurteilung: Problem {S:t:lecht

klein

e 1
konditioniert < | Ky oder o {; oder | fy oder o| {gro 5

Beispiel: Rundungsfehleranalyse linearer Differentialgleichung

Linearer Differentialgleichung:

g=A+ANy mit >0 y(0)=yo+ Ay

Losung:

y(t) = (yo + Ayo)ePTAN = F(yo + Ayo, A + AN)

Entwickeln die obige Gleichung an yy, A in eine Taylor-Reihe erster Ordnung:

fyo + Ayo, A+ AX) = yoe’\t + M Ayo + tyoe’\t AN
fuo a

Af=Ay

Kondition linearer Differentialgleichungen analysieren:

,Re{A\} <0 gut

0
li d =
s [ fuo oder £ {oo ,Re{\} >0 schlecht

Verfahrensfehler

Der Verfahrensfehler ist der von der numerischen Methode selbst eingefiihrte Fehler und
umfasst in der Regel den Trunkierungsfehler sowie mdogliche andere methodenbedingte
Fehler, wie zum Beispiel Fehler, die durch nicht konvergente Iterationen entstehen.

o(r,A) =1y (33)
g =z, A)— flz) 20" (A) ~ A" (34)

wobei P die Verfahrensordnung ist und A numerische Parameter wie Zeitschrittweite ist. P
kann auch die Konsistenzordnung von Verfahren dargestellt werden. Die Konsistenz stellt
sicher, dass die Formel der numerischen Methode selbst eine korrekte Naherung der urspriing-
lichen Gleichung darstellt:

iiggo(x,A)—f(x)zO@le (35)

13
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Eingabe ——

)

Problem Resultit

Algorithmus

X lqo(x ,A) - y(x)l

Verfahrensfehler

m
X Y

Eingabe

| Verfahrensfehler )N/‘ + y

Beispiel: Verfahrensfehleranalyse Vorwirts-Eulen-Verfahren
Differentialgleichung:
y=[fy)=y mit >0 y(0)=uyo

Numerische Losung Vorwirts-Eulen-Verfahren am i = 0 (Zeitschrittweite h):

g1 = ¢(yo,h) = yo + hf(yo) = yo(1 + h)
Exakte Losung am i = 0:
y1 = f(yo) = yoeh

Lokale Verfahrensfehler am ¢ = 0:
=9 —y=y(l+h—e
Entwickeln das obige Exponentialglied in eine Taylor-Reihe:

h? k3
gjlz—yo(?+€—|—...)f:02(h)zh2
Lokale Verfahrensfehler (Amplitudenfehler) ist in O%(h). Steigungsfehler: fi =1 /h=
O%(h)/h = O'(h)
Globale Verfahrensfehler:

g=>Y |ol=) O*(h)=0'h) P=1

k=1 k=1

Verfahrensordnung (Konsistenzordnung oder Fehler der Steigungsfehler) ist P = 1. Lokale
Verfahrensordnung (Fehler der Amplitudenfehler) ist P + 1 = 2.

14
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Kombination von Rundungsfehler und Verfahrensfehler ist wie in der folgenden Abbildung

dargestellt:

y

Ax Ay
x + Adx y+ty+dy

2.2.2 Numerische Stabilitit fiir Iteration

P(x*+ 0;)
x* x*

0; Oi+1

xi = x* 0 Xi+1= X" 0i+1

Iterationsfehler (Fixpunktsfehler):
0 =x; —x* mit p(z") =21"
Konvergenz der Iteration. Entwickeln Gl. 37 in eine Taylor-Reihe am x*:

1—00 d(P
45 = o
oz + 0;) o(x*) + 1

8+ O*(8;) bzw. 0y =2 08,

T

Fehlerverstarkung der Iteration:

<1 stabil

d
14 >~ 1 instabil

dx

dit1
0;

T*

=1 grenzstabil

Fehlerverstarkung fiir Newton-Verfahren:

vis = () :xi-(g )_1f<xi> mit f(z%) = 0
) 'f(w*)f"(x*)
(7))

T

dey
— =0<1
dx

15
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(39)

(40)
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Konvergenz fiir Newton-Verfahren:

Po| |6 f@) O 2@ @)
dz? | f'(z*) (f'(x))? (f(z*))? f'(@*)
Jip1 =20(6;) (43)
Beispiel: Quadratwurzel berechnen mit Picard-Iteration
Aufgabe:
Y’ =1 y* =21
Iterationsgleichung:
= () = oyt )
yz+1—§0yz—1+a Yi Yi
Fehlersverstarkung:
a < 0, instabil
SO o s 4 e = tabil
||~ lav1 g a =0, granzstabi
a >0, stabil
Y o=1
/
Y ~
a=0
a - -O.AS yO
A X

2.2.3 Numerische Lsung eines Systems gew6hnlicher Differentialgleichungen

Integratorenformen (zeitkritisch oder nicht und zustandsvariablenabhingig oder nicht)

offener Integrator

o — riickgekoppelter Integrator

L e

* = (1 ) - f
L e -

%= 1) w2
=5, 9 kﬁf(m t,or i |

16
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Einschritt-digitaler Integrator (Einschritt-numerische Integration)

Zeitdiskretisierung:

tsim

tk:k’h mit k‘ZO,l,Q,..., :L'(tk):l‘k

Analytische Integration zu numerischer Integration:

tet1
Tpy1 = Tp + / f(r)dr ~ xp + ho(sy)

122

Einschritt-numerische Integration (nur von ¢;, und ¢, abhingig):

i tsim . “
xk+1:xk+h2wisi k=0,1,2,..., A mit Zwizl
i=1 i

si=flre+h) agspte+ch) i=12...,m mit ¢=>Y a;
j=1 :

wobei m die Ordnung der RUKU-Verfahren ist.
Butcher-Koeffizientenschema:

1| @11 Q12 - Qim A
Co | Q21 Qg2 -+ Qa2m R
C AD
A
Cm | Am1 Am2 - Amm L T
w1 w9 e Wi, ‘ w

Fallunterscheidungen fiir A = {a;;} = AL + Ap + Ar

« Expliziter RUKU (Einschritt-numerischer Integrator): A = Ap =0
* Semi-impliziter RUKU: Az = 0

« Impliziter RUKU: sonst.

17
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Beispiel: Butcher-Koeffizientenschema verschiedener Integratoren

RUKU 4. Ordnung (explizit):

s1= f(xx, t) 0 0 0 0 0
s3= f(xi + h/2s1, b, + h/2) /2] 1/2 0 0 0
$3= f(xi + h/2s5, b, + h/2) /2] 0 1/2 0 0
sq=f(xy + hss, b + h) 1 0 0 1 0
Xpo1=xp +h/6(s; + 255 + 283 + 54) [1/6 1/3 1/3 1/6
Trapez-Regel (semi-implizit):
s1= f(xk, 1) o o 0
s2=f(xi +h/2(si + s2), ti +h) 1] 1/2 1/2
Xip1 =Xk +h/2(s1 + s2) 1/2 172
Euler-Riickwirts (implizit):
s1= f(xr + hsy, ti + h) 1)1
X411 = Xi + hsy 1
Programmstruktur fiir Einschritt-numerischen Integrator
Problem {f},x¢ — X0, 1, teim Eingabe
Xp = Xo,k =0 Initialisierung
X1 = X + hp(sg) Integrationsschritt
sk = f(xg, tg, h,sg) Newton-Iteration
|Asy|| < emax{l,||sx||}? | Newton-Iteration zum Ende
Xk = Xpa, k= k41 Umspeichern und Zeitindex
k< lm? Integrationsschritt zum Ende
Losung xj, < Xp, Ausgabe
Newton-Iteration in der Programmstruktur:
9g(sk) ==, — f(sg) mit g(s;) =0 (48)
. . 19) . . 19) . .
sitt = st - gty =sp— (1= L) (st = f(si)) mit i=0,1,2,..,m (89
8sk 8sk

Mehrschritt-digitaler Integrator (Mehrschritt-numerische Integration)
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2 Numerische Verfahren von gewdhnlichen Differentialgleichungen

2.2.4 Numerische Stabilitdt numerischer Integration linearer Differentialgleichungen

X exakte Losung | X(fi+1)

i -lokale Verfahrensfehler
V=
Xt i Xk+1

! Gesamtfehler Ok«
B} X | Xk+1

Numerische Losung
___h
Ik L+ !

|
|
|
|
|
|
|
|
|
|
&
|
|
|

Fortpflanzung von Gesamtfehler ¢y in ¢, nach t;1:
Ot1 = 20y, (50)

wobei z Fehlerverstarkung ist, die konjugiert komplex sein kann. Verfahren arbeitet numerisch
stabil durch:

Okt1

2 <1 Yk (51)
Ok

h—0

Im{z}
i Instabile

Stabile — 1 Retzd

N

Stabilitdtsgrenz
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2 Numerische Verfahren von gewohnlichen Differentialgleichungen

Beispiel: Numerische Stabilitdt der RUKU-Verfahren

Aufgabe:
T=Ar mit \=a-+wi

Fehlerverstarkung Euler-Vorwirts:
Tyl = Tk = hf((l,‘k) = T + h)\xk

Tl = (1 = h/\):ck 5 fk—i—l = (1 == h)\).’f?k
6k+1 = Tk41 — jk—f—l = (1 aF h)\)($k - i‘k) = (1 aF h)\)ék
z=14+hA bzw |1+h) <1

Im {hA} =0
Instabile

-1 Re {h\l=wh

Stabile

RUKU-Verfahren in verschiedener Ordnung;:

J(hA)

251

0.5

0.5 1
R(hA)
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2 Numerische Verfahren von gewdhnlichen Differentialgleichungen

2.2.5 Numerische Lsung differential-algebraischer Gleichungen

Differential-algebraische Gleichungen stellen ein dynamisches System mit algebraischen Ne-
benbedingungen dar (semi-expliziter Fall).

x = F(x,z) mit t>0,x(t)) =X, x € R" (52)
0=g(x,z),z € R" (53)

Semi-explizite Form kann auch wie folgt dargestellt werden:

I 0| [x] [f(x,2)
[0 0] {Z} N [g(x, z) (54)
MATLAB arbeitet mit dieser Struktur ,,odefile” mit dem Integrator ode45s (Index @ = 1).
Implizite Darstellung von DAE-System:

F(x,%) =0 (55)

Das DAE-System besitzt den Index o, unten o € N die minimale Anzahl an der Differentiation
erreicht ist, so dass das System F(x,x) = 0,4 = 0,---,9F = 0 in einem ODE-System
(explizit) X = ®(x) ausgeldst werden kann.
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2 Numerische Verfahren von gewdhnlichen Differentialgleichungen

Beispiel: Mathematisches Pendel

X1
X2
Aufgabe:
jl = —Z2T1
o= —2T3—¢
0=a}+a3 —1° = g(x)
—g = 2.1711.‘1 —+ 2I2!ﬁ'2 =0
dt
d2g .9 . .9 .
@ — 21‘1 -+ 2.(13'11'1 + 21’2 -+ 21’2$2 =0
bzw.

242 + 2222 + 245 + 2722 — 2x9g = 0
d3g

@:...+a(x)73:0 mit Indexa =3
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3 Priifungsvorbereitungsaufgaben

3 Priifungsvorbereitungsaufgaben
Jiaqi Lan

Aufgabe 1 (Explizites Mehrschritt-Verfahren). Das Adams-Bashforth-Verfahren zweiter

Ordnung fiir die Losung von gewdhnlichen Differenzialgleichungen der Form x = F'(¢, x) ist
gegeben durch

h
X1 =X + 57 (55Fk = 59F) 1 + 37F > — 9F} ) (56)

Hierbei gilt F; = F'(x;,t;). Losen Sie die folgenden Teilaufgaben.

a) Verifizieren Sie die Ordnung des Verfahrens im Fall dim x = 1 mit einer skalaren Funktion
f(t,x).

Losung

Verfahrensordnung ist P und lokaler Amplitudenfehler ist P + 1. Lokaler Amplitudenfehler
kann mit folgender Gleichung berechnet werden:

Tht1 = Thp1 — $(tk+1)

. h
wobei Ty = z(t) + ﬂ(55f(tk) — 59 (tk—1) + 37 (tk—2) — 9 (tx—3))
Eliminieren durch Taylor-Reihe:

2 3

(k1) LI (1) 4 Rf (1) + o (1) + (1) + OM(R)
2

Fltnn) IO, (1) Rf () — - f (t5) — OF(R)

2
Fltns) 2O rt) o (1) — o (0) — O%(h)

Fltns) IO, (1) 3 (1) — 2 () — O(h)

In die urspriingliche Gleichung einsetzen:

Tpy1 = —%hi” £ (tx) + O*(h) = O%*(h)

bzw. P+1=3,P=2
Verfahrensordnung P = 2.
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