
Simulationstechnik
Jiaqi Lan 13. September 2025

Inhaltsverzeichnis

Inhaltsverzeichnis

1 Einführung zur Simulationstechnik 2
1.1 Algebraisches Gleichungssystem (AE) . 2
1.2 Differentiales Gleichungssystem (ODE) . 2
1.3 Differential-algebraisches Gleichungssystem (DAE) 3
1.4 Lösungsmethode . 3

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen 4
2.1 Modellanalyse von gewöhnlichen Differentialgleichungen 6

2.1.1 Stationäre Lösung (Lösen eines Systems algebraischer Gleichungen) . . . 6
2.1.2 Linearisierung am stationären Punkt . 8
2.1.3 Analytische Lösung eines Systems linearer Differentialgleichungen . . . 8

2.2 Numerische Verfahren . 12
2.2.1 Numerische Fehleranalyse algebraischer Gleichungssysteme 12
2.2.2 Numerische Stabilität für Iteration . 15
2.2.3 Numerische Lösung eines Systems gewöhnlicher Differentialgleichungen 16
2.2.4 Numerische Stabilität numerischer Integration linearer Differentialglei-

chungen . 19
2.2.5 Numerische Lösung differential-algebraischer Gleichungen 21

3 Prüfungsvorbereitungsaufgaben 23

1

1 Einführung zur Simulationstechnik

1 Einführung zur Simulationstechnik

Simulationstechnik kann wesentlich als eine Methodik bezeichnet werden, mit der man das
Problem des dynamischen Systemsmithilfe unterschiedlicher numerischer Verfahren lösen
und analysieren kann.
In Mathematik und Physik bezeichnet ein dynamisches System ein Modell, das beschreibt, wie
sich ein System im Laufe der Zeit entwickelt. Es besteht aus Zustandsvariablen und einer
Entwicklungsvorschrift (oft in Form von Gleichungen). Formal unterscheiden sie sich von
kontinuierlichem dynamischen System und diskretem dynamischen System:
Inzwischen enthält ein dynamisches System 4 zentrale Elemente:

• Zustandsraum (state space): die Menge aller möglichen Zustände
• Entwicklungsgesetz: gegeben durch Differentialgleichungssysteme oder Iterationsab-
bildungen

• Bahnen/Phasentrajektorien: die Trajektorien, die das System ausgehend von einem
Anfangszustand im Zeitverlauf beschreibt

• Gleichgewichtspunkte, Grenzzyklen, Attraktoren

Numerische Verfahren sind Lösungsmethoden für die meisten komplizierten Differenzialglei-
chungssysteme. Vor allem nutzt manMATLAB und Simulink, um das Modell zu analysieren.

1.1 Algebraisches Gleichungssystem (AE)

In algebraischen Gleichungen treten die Unbekannten nur durch algebraische Operationen
(Addition, Subtraktion, Multiplikation, Division, Potenzierung) auf und beinhalten weder Ablei-
tungen noch Integrale.

1.2 Differentiales Gleichungssystem (ODE)

In Differentialgleichungen ist die Unbekannte eine Funktion, und in der Gleichung treten die
Ableitungen dieser Funktion auf. In Differentialgleichungen entwickeln sich alle Variablen
durch Ableitungen. Differentialgleichungssysteme umfassen 4 zentrale Kennzeichen:

• Anzahl der unabhängigen Variablen:
Gewöhnliche Differentialgleichung (ODE, ordinary differential equation, einer unab-
hängigen Variablen)
Partielle Differentialgleichung (PDE, partial differential equation, mehrere unabhängi-
ge Variablen)

2

1 Einführung zur Simulationstechnik

• Linearität:
Lineare Differentialgleichung (die unbekannte Funktion und ihre Ableitungen treten
nur in der ersten Potenz auf und werden nicht miteinander multipliziert)
Nichtlineare Differentialgleichung

• Ordnung (die Ordnung der höchsten Ableitung)
• Homogenität:
Homogen (wenn die rechte Seite null ist, das heißt, keine unabhängigen Terme)
Inhomogen

1.3 Differential-algebraisches Gleichungssystem (DAE)

In differential-algebraischen Gleichungen entwickeln sich einige Variablen durch Ableitungen,
während andere Variablen algebraischen Beschränkungen unterliegen.

1.4 Lösungsmethode

Lösungsverfahren umfassen 2 Verfahren, jeweils analytische Verfahren (exakte Darstellung
der Lösung mit Formeln, elementaren oder speziellen Funktionen) und numerische Verfahren
(Näherungslösungen durch Computer oder iterative Algorithmen). In der Simulationstechnik
werden numerische Verfahren hauptsächlich untersucht.
Numerische Verfahren (Iterationsverfahren) umfassen 3 Verfahren:

• Einschrittverfahren (Runge–Kutta-Verfahren):
Euler-Vorwärts
Euler-Rückwärts
Mittelwert
Reun

• Mehrschrittverfahren
• Extrapolationsverfahren

3

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

2 Numerische Verfahren von gewöhnlichen
Differentialgleichungen

Gewöhnliche Differenzialgleichungen (ODE) können durch die unten genannte Gleichung mit
Anfangsbedingungen definiert werden:

ẋ = F (x, t) mit x0 = x(t0) ∈ Rn, t ∈ R+ (1)

Wenn diese Gleichungen lineare gewöhnliche Differenzialgleichungen sind, können sie in
folgender Form dargestellt werden:

ẋ = Ax+Bu(t) mit x0 = x(t0) ∈ Rn, t ∈ R+ (2)

Es ist in der Regel notwendig, Systeme höherer linearer Differentialgleichungen in Systeme
erster linearer Differentialgleichungen zu reduzieren:
Dgln. in n. Ordnung + n. ABu.↔ n. Dgln. in 1. Ordnung + n. ABu.
Beispiel: Lineare Differentialgleichungen reduzieren (1)

Originale Differentialgleichung:

ÿ = −2δω0ẏ − ω2
0y +Kω2

0u mit ABu : y0 = y(t0), y1 = ẏ(t0)

Zustandsvariablen definieren:
x1 = y mit ABu : x1(t0) = y0

x2 = ẏ mit ABu : x2(t0) = y1

Umrechnen zur Simulationsgleichung:

ẋ1 = f1(x1, x2, u, t) : ẋ1 = ẏ = x2

ẋ2 = f2(x1, x2, u, t) : ẋ2 = ÿ = −2δω0ẏ − ω2
0y +Kω2

0u = −2δω0x2 − ω2
0x1 +Kω2

0u[
ẋ1

ẋ2

]
=

[
0 1
−ω2

0 −2δω0

]
︸ ︷︷ ︸

A

[
x1

x2

]
+

[
0

Kω2
0

]
︸ ︷︷ ︸

B

u

Darstellung von der MatrixA:

A = Jf (x) =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn...

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn

 (3)

4

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

Inzwischen definiert man die Funktion fi mit i ∈ 1, 2, . . . , n in folgender Form:

ẋi = fi(x1, x2, . . . , xn, u(t), t) bzw. ẋi = fi(x, t) (4)

Beispiel: Lineare Differentialgleichungen reduzieren (2)

Originale Differentialgleichung:

ÿ = aẏ + by + cü+ du̇+ eu mit ABu : y0 = y(t0), y1 = ẏ(t0) u0 = u(t0), u1 = u̇(t0)

Sukzessive Integration zur 1. Ordnung u:∫
ÿ dx = ẏ =cu̇+ ay + du+

∫
(by + eu) dx∫

ẏ dx = y = cu+

∫
(ay + du+

∫
(by + eu) dx)dx

Zustandsvariablen definieren:

x1 =

∫
(by + eu) dx mit ABu : x1(t0) = y1 − cu1 − ay0 − du0

x2 =

∫
(ay + du+ x1)dx mit ABu : x2(t0) = y0 − cu0

y = cu+ x2

Umrechnen zur Simulationsgleichung:

ẋ1 = f1(x1, x2, u, t) : ẋ1 = by+eu = bx2 + (bc+ e)u

ẋ2 = f2(x1, x2, u, t) : ẋ2 = ay + du+x1 = x1 + ax2 + (ac+ d)u[
ẋ1

ẋ2

]
=

[
0 b
1 a

]
︸ ︷︷ ︸

A

[
x1

x2

]
+

[
bc+ e
ac+ d

]
︸ ︷︷ ︸

B

u

Voraussetzungen: Existenz und Eindeutigkeit der Lösung x(t), t > 0

• Existenz: f(x) stetig
• Eindeutigkeit: ∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥mit L <∞

Falls f(x) stetig differenzierbar, dann sind beide Bedingungen erfüllt.

5

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

2.1 Modellanalyse von gewöhnlichen Differentialgleichungen

2.1.1 Stationäre Lösung (Lösen eines Systems algebraischer Gleichungen)

Definition zur stationären Lösung xs:
ẋs = F (xs, ts) = 0 (5)

Obige Gleichung ist algebraische Gleichung. Numerische Bestimmung von xs durch (i) exakte
Elimination oder (ii) näherungsweise Lösung. Wenn f(xs, ts) = 0 nichtlineare algebrai-
sche Gleichungen vorliegen, kann die numerische Bestimmung xs durch Newton-Verfahren
erfolgen. Wenn f(xs, ts) = 0 lineare algebraische Gleichungen vorliegen, können sie in der
folgenden Form dargestellt werden.

Ax = b bzw. x = A−1b (6)
Stationäre Lösung für lineare algebraische Gleichungen
(i) Exakte Elimination: Gauß-Elimination

• Dreieckszerlegung vonA = LR:
a11 a12 . . . a1n
a21 a22 . . . a2n...
an1 an2 . . . ann


︸ ︷︷ ︸

A


x1

x2...
xn

 =


1 0
l21 1
...
ln1 ln2 . . . 1


︸ ︷︷ ︸

L


r11 r12 . . . r1n

r22 . . . r2n
.

0 rnn


︸ ︷︷ ︸

R


x1

x2...
xn


︸ ︷︷ ︸

z

=


b1
b2...
bn



Multiplikationszahlen:∑n−1
i=1 i2 ≃ n3/3

• Vorwärtssubstitution (z = L−1b):
1 0
l21 1
...
ln1 ln2 . . . 1


︸ ︷︷ ︸

L


z1
z2...
zn

 =


b1
b2...
bn


Multiplikationszahlen:∑n−1

i=1 i ≃ n2/2

• Rückwärtssubstitution (x = R−1z):
r11 r12 . . . r1n

r22 . . . r2n
.

0 rnn


︸ ︷︷ ︸

R


x1

x2...
xn

 =


z1
z2...
zn



6

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

Multiplikationszahlen:∑n−1
i=1 i ≃ n2/2

Gesamtsmultiplikationszahlen: n2 + n3/3 < (n+ 1)nn! (Cramer-Regel)
(ii) Näherungsweise Lösung: Iterationsverfahren

xi+1 = Φ(xi) mit i = 0, 1, . . . ,m x0 = Startwert (7)
Zum Beispiel die Fixpunktsgleichung (Richardson-Verfahren):

Ax = b⇔ x = (In − A)x+ b⇔ xn+1 = (In − A)xn + b (8)
Eine detailliertere Analyse befindet sich in Abschnitt 2.2.1.
Stationäre Lösung für nichtlineare algebraische Gleichungen
Lösungsarten:

1 Einfache reelle Lösung (det(∂F
∂x

∣∣
xs
) ̸= 0)

2 k-fache reelle Lösung (∂F
∂x

∣∣
xs

=
{0,i=1,2,...,k−1

̸=0,i=k
)

3 Zwei reelle Lösungen (von Startwert und von Parameter abhängig)
4 Keine reelle Lösung

(ii) Näherungsweise Lösung: Newton-Verfahren
Lösung der Aufgabe mittels Taylor-Reihe in der Umgebung von x0:

F (x) =F (x0) +
∂F

∂x

∣∣∣∣
x0

(x− x0) = 0 (9)

x1 = x0 −
(
∂F

∂x

∣∣∣∣
x0

)−1

f(x0) (10)

Iterationsvorschritt : xi+1 = xi −
(
∂F

∂x

∣∣∣∣
xi

)−1

f(xi) mit i = 0, 1, . . . ,m (11)

Eine detailliertere Analyse befindet sich in Abschnitt 2.2.1.

7

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

2.1.2 Linearisierung am stationären Punkt

Wenn man nichtlineare gewöhnliche Differentialgleichungen analysiert, wird sie an dem sta-
tionären Punkt linearisiert werden. Betrachtung in der Umgebung der stationären Lösung:

x = xs +∆x (12)
ẋ = ẋs +∆ẋ = 0 +∆ẋ (13)

ẋ = F (xs +∆x)
1.Taylor am xs

= F (xs) +
∂F

∂x

∣∣∣∣
x=xs︸ ︷︷ ︸
A

∆x+O2(∆x) (14)

∆ẋ = A(xs)∆x mit ∆x0 = x0 − xs (15)

Eigenschaften von JacobimatrixA(xs): dense (mehrere Element ̸= 0) und dünn (seltene Ele-
ment ̸= 0) besetzte Matrizen.

2.1.3 Analytische Lösung eines Systems linearer Differentialgleichungen

Gl. 15 ist das homogene System linearer Differentialgleichungen. Allgemeine Lösung kann
durch die folgende Gleichung dargestellt werden:

∆x(t) = eAt∆x0, eAt =
∞∑
k=0

(At)k

k!
(16)

wobeiA ∈ Rn×n eine konstante Matrix ist. DaAk sehr schwer zu berechnen ist, wird es zuerst
diagonalisiert.
Darstellung mit Eigenwerten und Eigenvektoren: Angenommen,A ist diagonalisierbar:

A = V ΛV −1, Ak = V ΛkV −1 (17)

wobei Λ = diag(λ1, λ2, . . . , λn) die Eigenwerte enthält, V = [v1,v2, . . . ,vn] die Eigenvekto-
renmatrix ist. Eigenwerte λi können durch det(A− λI) = 0 berechnet werden. Eigenvekto-
renmatrix vi können durch (A− λiI)vi = 0 berechnet werden.
Dann gilt:

eAt = V eΛtV −1, eΛt = diag
(
eλ1t, eλ2t, . . . , eλnt

) (18)

∆x(t) =
n∑

i=1

cie
λitvi (19)

c = V −1∆x0 (20)

wobei die Koeffizienten ci durch die Anfangsbedingung∆x(0) = ∆x0 bestimmt werden wie
Gl. 20. Besondere Fälle:

8

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

• Mehrfacher Eigenwert: Man benötigt verallgemeinerte Eigenvektoren, und die Lösung
kann Terme wie teλt enthalten.

• Komplexe Eigenwerte: Die Lösung enthält Sinus- und Kosinusfunktionen:

e(α±iβ)t = eαt(cos βt± i sin βt) (21)

Eigenwerte analysieren
In einem komplexen Koordinatensystem werden die Eigenwerte markiert. Wenn λi < 0 ist,
handelt es sich um eine stabile Lösung. Enthalten die Eigenwerte einen imaginären Teil, handelt
es sich um eine periodische Lösung. Wie in der folgenden Abbildung dargestellt.

Bestimmung von Simulationszeit

• Zeitkonstante oder Periode:

Ti = min

{
1

|Re{λi}|
,

2π

|Im{λi}|

}
(22)

Tmax = max
i=1,2,...,n

{Ti} (23)

• Steifigkeitsmaß:

γ =
Tmax

Tmin

> 103 ∼ 107 (24)

• Simulationszeit:

tsim = 5Tmax (25)

9

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

• Zeitschrittweite:

hNumerik = min

{
Tmin

10
,
tsim
200

}
(26)

hGraphik =
tsim
200

(27)

• Rechnenzeit:
tsim

hNumerik

=
5Tmax

Tmin/10
= 50γ > 50 · 103 (28)

Problem (i): Steife Differentialgleichungen:
Eigenschaft: weit liegende Zeitkonstanten Ti bzw. sehr großer Unterschied zwischen Tmax und
Tmin, γ >> 1. Infolgedessen ist die Rechenzeit zu groß.

Abhilfe: Variable Zeitschrittweite h (graduell weiter die Zeitschrittweite).
Problem (ii): Unstetige u(t) oder f(x):

Abhilfe: Erkennen der Unstetigkeitsstelle und Versuchen, stückweise numerische Lösung mit
neuen Anfangsbedingungen.

10

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

Beispiel: Analytische Lösung eines 2× 2 Systems linearer Differentialgleichungen

Betrachten wir das System:

ẋ = Ax, A =

[
2 1
1 2

]
, x(0) =

[
3
1

]
.

Eigenwerte berechnen
Die Eigenwerte λ erfüllen:

det(A− λI) = 0

det

[
2− λ 1
1 2− λ

]
= (2− λ)2 − 1 = 0

⇒ λ1 = 1, λ2 = 3

Eigenvektoren bestimmen

• Für λ1 = 1:
(A− I)v =

[
1 1
1 1

]
v = 0 =⇒ v1 =

[
1
−1

]
• Für λ2 = 3:

(A− 3I)v =

[
−1 1
1 −1

]
v = 0 =⇒ v2 =

[
1
1

]
Eigenvektormatrix

V = [v1,v2] =

[
1 1
−1 1

]
Koeffizienten ci berechnen
Aus der Anfangsbedingung x0 =

[
3
1

]
folgt: c = V −1x0

det(V) = 1 · 1− (−1) · 1 = 2, V −1 =
1

2

[
1 −1
1 1

]

c = V −1x0 =
1

2

[
1 −1
1 1

] [
3
1

]
=

[
1
2

]
Analytische Lösung

x(t) = c1e
λ1tv1 + c2e

λ2tv2 = 1 · et
[
1
−1

]
+ 2 · e3t

[
1
1

]

x(t) =

[
et + 2e3t

−et + 2e3t

]
11

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

2.2 Numerische Verfahren

Das Wesen der numerischen Methoden besteht darin, durch Approximation und Diskreti-
sierung kontinuierliche und möglicherweise nicht exakt lösbare Probleme in Näherungsrech-
nungen mit endlichen Schritten zu überführen und ihre Zuverlässigkeit durch Fehleranalyse
sicherzustellen.

2.2.1 Numerische Fehleranalyse algebraischer Gleichungssysteme

Rundungsfehler

Dabei wird die numerische Lösung mit Rundungsfehlern dargestellt als:
x∗ = rd{x} f ∗ = rd{f(x)} (29)

Relativer Fehler ist:

δx =

∣∣∣∣x− x∗

x

∣∣∣∣ δf =

∣∣∣∣f − f ∗

f

∣∣∣∣ ≤ eps (Genauigkeit) (30)

f(u+∆u, v +∆v)
1.Taylor am (u,v)

= f(u, v)+
∂f

∂u

∣∣∣∣
(u,v)

∆u+
∂f

∂v

∣∣∣∣
(u,v)

∆v︸ ︷︷ ︸
Absolute Fehler

(31)

δf =
f(u+∆u, v +∆v)− f(u, v)

f(u, v)
= u

fu
f

∆u

u
+ v

fv
f

∆v

v
= u

fu
f︸︷︷︸

Ku

δu + v
fv
f︸︷︷︸

Kv

δv (32)

12

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

Beurteilung: Problem {gut

schlecht
konditioniert⇔ |Ku oder v|

{<1

>1
oder |fu oder v|

{klein

groβ

Beispiel: Rundungsfehleranalyse linearer Differentialgleichung

Linearer Differentialgleichung:

ẏ = (λ+∆λ)y mit t > 0 y(0) = y0 +∆y0

Lösung:

y(t) = (y0 +∆y0)e
(λ+∆λ)t = f(y0 +∆y0, λ+∆λ)

Entwickeln die obige Gleichung an y0, λ in eine Taylor-Reihe erster Ordnung:

f(y0 +∆y0, λ+∆λ) = y0e
λt + eλt︸︷︷︸

fy0

∆y0 + ty0e
λt︸ ︷︷ ︸

fλ

∆λ

︸ ︷︷ ︸
∆f=∆y

Kondition linearer Differentialgleichungen analysieren:

lim
t→∞
|fy0 oder fλ| =

{
0 ,Re{λ} < 0 gut

∞ ,Re{λ} ≥ 0 schlecht

Verfahrensfehler
Der Verfahrensfehler ist der von der numerischen Methode selbst eingeführte Fehler und
umfasst in der Regel den Trunkierungsfehler sowie mögliche andere methodenbedingte
Fehler, wie zum Beispiel Fehler, die durch nicht konvergente Iterationen entstehen.

φ(x,∆) = ȳ (33)
ỹ = φ(x,∆)− f(x) ≃ OP (∆) ≃ ∆P (34)

wobei P die Verfahrensordnung ist und∆ numerische Parameter wie Zeitschrittweite ist. P
kann auch die Konsistenzordnung von Verfahren dargestellt werden. Die Konsistenz stellt
sicher, dass die Formel der numerischen Methode selbst eine korrekte Näherung der ursprüng-
lichen Gleichung darstellt:

lim
∆→0

φ(x,∆)− f(x) = 0⇔ P ≥ 1 (35)

13

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

Beispiel: Verfahrensfehleranalyse Vorwärts-Eulen-Verfahren

Differentialgleichung:

ẏ = f(y) = y mit t > 0 y(0) = y0

Numerische Lösung Vorwärts-Eulen-Verfahren am i = 0 (Zeitschrittweite h):

ȳ1 = φ(y0, h) = y0 + hf(y0) = y0(1 + h)

Exakte Lösung am i = 0:
y1 = f(y0) = y0e

h

Lokale Verfahrensfehler am i = 0 :

ỹ1 = ȳ1 − y1 = y0(1 + h− eh)

Entwickeln das obige Exponentialglied in eine Taylor-Reihe:

ỹ1 = −y0(
h2

2
+

h3

6
+ . . .) ≃ O2(h) ≃ h2

Lokale Verfahrensfehler (Amplitudenfehler) ist inO2(h). Steigungsfehler: f̃1 = ỹ1/h =
O2(h)/h = O1(h)
Globale Verfahrensfehler:

ỹ =

tsim
h∑

k=1

|ỹk| =

tsim
h∑

k=1

O2(h) = O1(h) P = 1

Verfahrensordnung (Konsistenzordnung oder Fehler der Steigungsfehler) ist P = 1. Lokale
Verfahrensordnung (Fehler der Amplitudenfehler) ist P + 1 = 2.

14

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

Kombination von Rundungsfehler und Verfahrensfehler ist wie in der folgenden Abbildung
dargestellt:

2.2.2 Numerische Stabilität für Iteration

Iterationsfehler (Fixpunktsfehler):
δi = xi − x∗ mit φ(x∗) = x∗ (36)

φ(x∗ + δi) = x∗+δi+1 (37)
Konvergenz der Iteration. Entwickeln Gl. 37 in eine Taylor-Reihe am x∗:

φ(x∗ + δi)
i→∞
= φ(x∗) +

dφ

dx

∣∣∣∣
x∗
δi +O2(δi) bzw. δi+1

i→∞
= O1(δi) (38)

Fehlerverstärkung der Iteration:
∣∣∣∣δi+1

δi

∣∣∣∣ = ∣∣∣∣dφdx
∣∣∣∣
x∗

∣∣∣∣ =

< 1 stabil

> 1 instabil

= 1 grenzstabil

(39)

Fehlerverstärkung für Newton-Verfahren:

xi+1 = φ(xi) =xi −
(
df

dx

∣∣∣∣
xi

)−1

f(xi) mit f(x∗) = 0 (40)∣∣∣∣dφdx
∣∣∣∣
x∗

∣∣∣∣ = ∣∣∣∣f(x∗)f
′′
(x∗)

(f ′(x∗))2

∣∣∣∣ = 0 < 1 (41)

15

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

Konvergenz für Newton-Verfahren:

d2φ

dx2

∣∣∣∣
x∗

=
f ′′(x∗)

f ′(x∗)
+

f(x∗) f (3)(x∗)

(f ′(x∗))2
− 2f(x∗) (f ′′(x∗))2

(f ′(x∗))3
=

f ′′(x∗)

f ′(x∗)
(42)

δi+1
i→∞
= O2(δi) (43)

Beispiel: Quadratwurzel berechnen mit Picard-Iteration

Aufgabe:
y2 = 1 y∗ = ±1

Iterationsgleichung:
yi+1 = φ(yi) =

1

1 + α
(αyi +

1

yi
)

Fehlersverstärkung:

∣∣∣∣dφdx
∣∣∣∣
x∗

∣∣∣∣ = ∣∣∣∣α− 1

α + 1

∣∣∣∣ bedingt stabil mit


α < 0 , instabil

α = 0 , granzstabil

α > 0 , stabil

2.2.3 Numerische Lösung eines Systems gewöhnlicher Differentialgleichungen

Integratorenformen (zeitkritisch oder nicht und zustandsvariablenabhängig oder nicht)

16

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

Einschritt-digitaler Integrator (Einschritt-numerische Integration)
Zeitdiskretisierung:

tk = kh mit k = 0, 1, 2, . . . ,
tsim
h

x(tk) = xk (44)

Analytische Integration zu numerischer Integration:

xk+1 = xk +

∫ tk+1

tk

f(τ)dτ ≃ xk + hφ(sk) (45)

Einschritt-numerische Integration (nur von tk und tk+1 abhängig):

xk+1 = xk + h
m∑
i=1

wisi k = 0, 1, 2, . . . ,
tsim
h

mit
m∑
i

wi = 1 (46)

si = f(xk + h
m∑
j=1

aijsj, tk + cih) i = 1, 2, . . . ,m mit ci =
m∑
i

aij (47)

wobeim die Ordnung der RUKU-Verfahren ist.
Butcher-Koeffizientenschema:

c1 a11 a12 · · · a1m
c2 a21 a22 · · · a2m...
cm am1 am2 · · · amm

w1 w2 · · · wm

. . . AR

c AD

AL
. . .

wT

Fallunterscheidungen fürA = {aij} = AL + AD + AR

• Expliziter RUKU (Einschritt-numerischer Integrator):AR = AD = 0

• Semi-impliziter RUKU:AR = 0

• Impliziter RUKU: sonst.

17

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

Beispiel: Butcher-Koeffizientenschema verschiedener Integratoren

RUKU 4. Ordnung (explizit):

Trapez-Regel (semi-implizit):

Euler-Rückwärts (implizit):

Programmstruktur für Einschritt-numerischen Integrator

Problem {f},x0→ x0, h, tsim Eingabe
xk = x0, k = 0 Initialisierung

xk+1 = xk + hφ(sk) Integrationsschritt
sk = f(xk, tk, h, sk) Newton-Iteration

∥∆sk∥ < εmax{1, ∥sk∥}? Newton-Iteration zum Ende
xk := xk+1, k := k + 1 Umspeichern und Zeitindex

k < tsim
h
? Integrationsschritt zum Ende

Lösung xk← xk Ausgabe

Newton-Iteration in der Programmstruktur:

g(sk) := sk − f(sk) mit g(s∗k) = 0 (48)
si+1
k = sik −

∂g

∂sk
g(sik) = sik −

(
1− ∂f

∂sk

)
(sik − f(sik)) mit i = 0, 1, 2, . . . ,m (49)

Mehrschritt-digitaler Integrator (Mehrschritt-numerische Integration)

18

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

2.2.4 Numerische Stabilität numerischer Integration linearer Differentialgleichungen

Fortpflanzung von Gesamtfehler δk in tk nach tk+1:

δk+1 = zδk (50)

wobei z Fehlerverstärkung ist, die konjugiert komplex sein kann. Verfahren arbeitet numerisch
stabil durch:

lim
h→0

δk = 0 ⇔ |z| =
∣∣∣∣δk+1

δk

∣∣∣∣ < 1 ∀k (51)

19

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

Beispiel: Numerische Stabilität der RUKU-Verfahren

Aufgabe:
ẋ = λx mit λ = α + wi

Fehlerverstärkung Euler-Vorwärts:

xk+1 = xk + hf(xk) = xk + hλxk

xk+1 = (1 + hλ)xk , x̄k+1 = (1 + hλ)x̄k

δk+1 = xk+1 − x̄k+1 = (1 + hλ)(xk − x̄k) = (1 + hλ)δk

z = 1 + hλ bzw |1 + hλ| < 1

RUKU-Verfahren in verschiedener Ordnung:

20

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

2.2.5 Numerische Lösung differential-algebraischer Gleichungen

Differential-algebraische Gleichungen stellen ein dynamisches System mit algebraischen Ne-
benbedingungen dar (semi-expliziter Fall).

ẋ = F (x, z) mit t > 0,x(t0) = x0,x ∈ Rn (52)
0 =g(x, z), z ∈ Rn (53)

Semi-explizite Form kann auch wie folgt dargestellt werden:[
I 0
0 0

] [
ẋ
ż

]
=

[
f(x, z)
g(x, z)

]
(54)

MATLAB arbeitet mit dieser Struktur „odefile“ mit dem Integrator ode45s (Index α = 1).
Implizite Darstellung von DAE-System:

F (x, ẋ) = 0 (55)

Das DAE-System besitzt den Index α, unten α ∈ N die minimale Anzahl an der Differentiation
erreicht ist, so dass das System F (x, ẋ) = 0, dF

dt
= 0, · · · , dαF

dtα
= 0 in einem ODE-System

(explizit) ẋ = Φ(x) ausgelöst werden kann.

21

2 Numerische Verfahren von gewöhnlichen Differentialgleichungen

Beispiel: Mathematisches Pendel

Aufgabe: 
ẍ1 = −zx1

ẍ2 = −zx2 − g

0 = x2
1 + x2

2 − l2 = g(x)

dg

dt
= 2x1ẋ1 + 2x2ẋ2 = 0

d2g

dt2
= 2ẋ2

1 + 2x1ẍ1 + 2ẋ2
2 + 2x2ẍ2 = 0

bzw.
2ẋ2

1 + 2x2
1z + 2ẋ2

2 + 2x2
2z − 2x2g = 0

d3g

dt3
= · · ·+ a(x)ż = 0 mit Index α = 3

22

3 Prüfungsvorbereitungsaufgaben

3 Prüfungsvorbereitungsaufgaben
Jiaqi Lan
Aufgabe 1 (Explizites Mehrschritt-Verfahren). Das Adams-Bashforth-Verfahren zweiter
Ordnung für die Lösung von gewöhnlichen Differenzialgleichungen der Form ẋ = F (t,x) ist
gegeben durch

xk+1 = xk +
h

24

(
55Fk − 59Fk−1 + 37Fk−2 − 9Fk−3

) (56)

Hierbei gilt Fi = F (xi, ti). Lösen Sie die folgenden Teilaufgaben.
a) Verifizieren Sie die Ordnung des Verfahrens im Fall dim x = 1mit einer skalaren Funktion
f(t, x).
Lösung

Verfahrensordnung ist P und lokaler Amplitudenfehler ist P +1. Lokaler Amplitudenfehler
kann mit folgender Gleichung berechnet werden:

x̃k+1 = x̄k+1 − x(tk+1)

wobei x̄k+1 = x(tk) +
h

24

(
55f(tk)− 59f(tk−1) + 37f(tk−2)− 9f(tk−3)

)
Eliminieren durch Taylor-Reihe:

x(tk+1)
Taylor am x(tk)
=========== x(tk) + hf(tk) +

h2

2
f

′
(tk) +

h3

6
f

′′
(tk) +O4(h)

f(tk−1)
Taylor am f(tk)
=========== f(tk)− hf

′
(tk)−

h2

2
f

′′
(tk)−O3(h)

f(tk−2)
Taylor am f(tk)
=========== f(tk)− 2hf

′
(tk)−

4h2

2
f

′′
(tk)−O3(h)

f(tk−3)
Taylor am f(tk)
=========== f(tk)− 3hf

′
(tk)−

9h2

2
f

′′
(tk)−O3(h)

In die ursprüngliche Gleichung einsetzen:

x̃k+1 = −
1

3
h3f

′′
(tk) +O4(h) = O3(h)

bzw. P + 1 = 3, P = 2

Verfahrensordnung P = 2.

23

	Einführung zur Simulationstechnik
	Algebraisches Gleichungssystem (AE)
	Differentiales Gleichungssystem (ODE)
	Differential-algebraisches Gleichungssystem (DAE)
	Lösungsmethode

	Numerische Verfahren von gewöhnlichen Differentialgleichungen
	Modellanalyse von gewöhnlichen Differentialgleichungen
	Stationäre Lösung (Lösen eines Systems algebraischer Gleichungen)
	Linearisierung am stationären Punkt
	Analytische Lösung eines Systems linearer Differentialgleichungen

	Numerische Verfahren
	Numerische Fehleranalyse algebraischer Gleichungssysteme
	Numerische Stabilität für Iteration
	Numerische Lösung eines Systems gewöhnlicher Differentialgleichungen
	Numerische Stabilität numerischer Integration linearer Differentialgleichungen
	Numerische Lösung differential-algebraischer Gleichungen

	Prüfungsvorbereitungsaufgaben

