
Project Report
Topology Optimization of Bend for Different Flow Configurations

Computational Fluid Dynamics and Simulation Lab SS 2025

Jiaqi Lan

August 23, 2025

Contents

1 Introduction 3

2 Problem Statement 4
2.1 Governing Equations . 4

2.1.1 Constraint Equation . 5

2.1.2 Objective Function . 6

2.1.3 Adjoint Method . 6

2.1.4 Gradient-based Line Search Algorithm 7

2.2 Geometry and Boundary Conditions . 8

3 Results and Discussion 9
3.1 Numerical Stability Analysis . 9

3.2 Influence of Resolution . 10

3.3 Influence of Reynolds Number . 11

3.4 Investigation of Different Objective Function 12

3.5 Investigation of Different Design Domain . 12

3.6 Investigation of Different Geometry . 13

4 Conclusion 17

References 18

2

1 Introduction

In the process of fluid transportation, the optimized design of bent pipes can effectively reduce

energy loss and pressure drop of the fluid. Among them, the optimization process of bent pipes

can be addressed using numerical simulation methods. The model used in this report is based

on the lattice Boltzmann method (LBM) and topology optimization (TO) [1][2]. The LBM is a

numerical approach for simulating fluid flow by modeling particle collisions and propagation

on a lattice grid. TO is a mathematical method for designing optimal structures by optimizing

the distribution of material within a given design domain.

In addition, to determine the optimal topology of the bent pipe, this model employs a homog-

enized lattice Boltzmann method with a porosity parameter P [3]. Meanwhile, to find the

minimum value of the objective function, this report uses the adjoint method to construct the

adjoint homogenized lattice Boltzmann equations [4]. Finally, a gradient-based line search

algorithm is applied to iteratively solve for the minimum of the objective function [5].

This report will explore the numerical stability and the results of topology optimization simu-

lations for different resolutions, Reynolds numbers, objective functions, shapes of the design

domain, and positions of inlet and outlet in order to analyze the characteristics of this topology

optimization model and its optimization results.

3

2 Problem Statement

In this report, a 2D simplified model of a bent pipe is investigated, as shown in Fig. 1. The

design domain is defined as a square with a side length of L, from which two right-angled

isosceles triangles with leg lengths of L/2 are removed. The purpose of removing these two

triangles is to reduce the computational domain, thereby decreasing the simulation time. Here,

L = 0.5 m. The inlet boundary condition Γ𝑖𝑛𝑙𝑒𝑡 is defined as a fixed inflow rate 𝑢 = 0.06 m/s.
The outlet boundary condition Γ𝑜𝑢𝑡𝑙𝑒𝑡 is set as an outlet with a pressure value of 0.

Figure 1. Design domain and boundary conditions

In the initial parameter settings, the fluid density 𝜌 = 1 kg/m3
, and the kinematic viscosity

𝜈 = 0.001 m2/s. According to Eq. (2.1), the Reynolds number Re = 30. The model resolution

N = 20.

Re =
𝑢L

𝜈
(2.1)

2.1 Governing Equations

In this model, the topology optimization problem can be formulated as follows:

min

𝜶
𝐽 (𝑓 ,𝜶) subject to 𝐺 (𝑓 ,𝜶) = 0 (2.2)

where 𝑓 is the state, ®𝛼 is the vector of design variables, 𝐽 is an objective function, and 𝐺 is the

equality constraint.

4

2 Problem Statement

2.1.1 Constraint Equation

Based on the LBM method, the constraint 𝐺 (𝑓 ,𝜶) = 0 can be expressed as the homogenized

lattice BGK-Boltzmann equation [3]:

𝑓𝑖 (x + e𝑖Δ𝑡, 𝑡 + Δ𝑡) − 𝑓𝑖 (x, 𝑡) +
Δ𝑡

𝜏

[
𝑓𝑖 (x, 𝑡) − 𝑓 𝑒𝑞𝑖,𝑃 (x, 𝑡)

]
= 0 in ΩΔ𝑥 × 𝐼Δ𝑡 (2.3)

where 𝜏 ∈ R+
is the relaxation time, 𝑒𝑖 ∈ R2

for 𝑖 ∈ 0, 1, ..., 8 in the velocity model 𝐷2𝑄9, as

shown in Fig. 2, 𝑓𝑖 : ΩΔ𝑥 × 𝐼Δ𝑡 → R is the particle distribution function, and 𝑓
𝑒𝑞

𝑖,𝑃
: ΩΔ𝑥 × 𝐼Δ𝑡 → R

is the discrete equilibrium distribution function for the homogenized BGK-Boltzmann equation,

which is expressed as:

𝑓
𝑒𝑞

𝑖.𝑃
= 𝑤𝑖𝜌

[
1 + e𝑖 · 𝑃u

𝑐2𝑠
+ (e𝑖 · 𝑃u)2

2𝑐4𝑠
− 𝑃u · 𝑃u

2𝑐2𝑠

]
(2.4)

where𝑤𝑖 are weights corresponding to the D2Q9 model as shown in Fig. 2, 𝜌 : Ω × 𝐼 → R+
is

the macroscopic density, u : Ω × 𝐼 → R2
is the macroscopic velocity, the lattice speed of sound

is 𝑐𝑠 = Δ𝑡/
√
3Δ𝑥 , and the porosity distribution is 𝑃 : Ω → [0, 1], which represents the fluid

permeability at point x; when 𝑃 (x) is 0, it means the point is impermeable, and when 𝑃 (x) is 1,
it means the fluid can pass through completely. Its definition is as follows [4]:

𝑃 (𝛼) = 𝑒𝛼

𝑒𝛼 +𝐺ℎ
with 𝐺ℎ = Δ𝑥2𝜈𝜏 (2.5)

In addition, the macroscopic density 𝜌 and velocity u can be represented as follows:

𝜌 (x, 𝑡) =
8∑︁
𝑖=0

𝑓𝑖 (2.6)

u(x, 𝑡) = 1

𝜌

8∑︁
𝑖=0

𝑒𝑖 𝑓𝑖 (2.7)

Figure 2.The distribution of 𝑒𝑖 and𝑤𝑖 in D2Q9 model

5

2 Problem Statement

2.1.2 Objective Function

The objective function 𝐽 (𝑓 ,𝜶) of this model can be chosen as either the total dissipation, which

includes viscous dissipation energy and porous dissipation, or the pressure drop. When the

objective function 𝐽 is defined as the total dissipation, its expression is as follows:

𝐽 (𝑓 ,𝜶) =
∑︁
x∈Ω

[
𝜀visc(x) + 𝜀porous(x)

]
+ 𝜶 · 𝑉

𝑉ref
in ΩΔ𝑥 (2.8)

where 𝜀visc is viscous dissipation, 𝜀porous is porous dissipation, 𝑉 is the total material volume,

and 𝑉ref = 0.25 is the reference volume. The expression for viscous dissipation 𝜀visc is given as

follows:

𝜀visc(x) =
1

2

𝜈

(
1

𝜏𝜌 (x)𝑐2𝑠Δ𝑡

)
2

𝚷
neq(x)2 (2.9)

where 𝚷
neq(x) is the non-equilibrium stress tensor, and its expression is as follows:

𝚷
neq

𝑥𝑦 =

8∑︁
𝑖=0

𝑒𝑖𝑥𝑒𝑖𝑦 (𝑓𝑖 − 𝑓 𝑒𝑞𝑖,𝑃) (2.10)

where 𝑒𝑖𝑥 is the component in the 𝑥 direction of the 𝑖-th discrete velocity. 𝑒𝑖𝑦 is defined similarly.

The expression for viscous dissipation 𝜀visc is given as follows:

𝜀porous(x) = 𝜈 ·
u(x)2
𝐾 (x) (2.11)

where 𝐾 : R → [0,∞) is the local permeability. It is defined as follows:

𝐾 (x) = 𝑒𝛼 +𝐺ℎ (2.12)

The total material volume 𝑉 is given as follows:

𝑉 =
∑︁
x∈Ω

𝑃 (x) · Δ𝑥2 (2.13)

When the objective function 𝐽 is defined as the pressure drop, its expression is as follows:

𝐽 (𝑓 ,𝜶) =
∑︁

x∈ΩMN=7

𝑝 (x) −
∑︁

x∈ΩMN=8

𝑝 (x) + 𝜶 · 𝑉
𝑉ref

in ΩΔ𝑥 (2.14)

where ΩMN=7 is the region with MN (material number) = 7. ΩMN=8 is defined similarly.

2.1.3 Adjoint Method

In order to get the minimum 𝐽 , that is, to achieve
d𝐽

d𝜶 = 0 using gradient-based optimization,

the adjoint method is used here. By introducing an adjoint variable 𝜆, the adjoint equation can

be constructed as follows:

𝜕𝐽 (𝑓 ,𝜶)
𝜕𝑓

+ 𝜆 · 𝜕𝐺 (𝑓 ,𝜶)
𝜕𝑓

= 0 (2.15)

6

2 Problem Statement

here, 𝜆 · 𝜕𝐺
𝜕𝑓

is defined as a new function 𝜙 . By coupling the adjoint equations with the

homogenized lattice BGK-Boltzmann equation with the method proposed by Krause et al., the

following expression for the discrete adjoint homogenized lattice BGK-Boltzmann equation

can be obtained [3]:

𝜙𝑖 (x + e𝑖Δ𝑡, 𝑡 + Δ𝑡) − 𝜙𝑖 (x, 𝑡) +
Δ𝑡

𝜏
(𝜙𝑖 − 𝜙𝑒𝑞𝑖,𝑃) +

𝜕𝐽

𝜕𝑓
= 0 in ΩΔ𝑥 × 𝐼Δ𝑡 (2.16)

The definition of discrete adjoint equilibrium distribution 𝜙
𝑒𝑞

𝑖,𝑃
is given as follows:

𝜙
𝑒𝑞

𝑃,𝑖
(x, 𝑡) = 1

𝜌

8∑︁
𝑗=0

𝜙 𝑗
(
1 + 3𝑃 (e 𝑗 − 𝑃𝑢) (e𝑖 − 𝑢)

)
𝑓
𝑒𝑞

𝑃
(x, 𝑡) (2.17)

After solving for
𝜕𝐺
𝜕𝜶 in (2.3),

𝜕𝐽

𝜕𝜶 in (2.8 or 2.14) and 𝜆 in (2.16), we substitute them into the

following equation to obtain the value of
d𝐽

d𝜶 :

d𝐽

d𝜶
=
𝜕𝐽

𝜕𝜶
+ 𝜆 · 𝜕𝐺

𝜕𝜶
(2.18)

2.1.4 Gradient-based Line Search Algorithm

To solve for
d𝐽

d𝜶 = 0, the gradient-based line search algorithm is used here. After specifying the

initial values of 𝜶 0, maximal number of iterations, the iterative process to solve for
d𝐽

d𝜶 = 0 be-

gins. At iteration step 𝑘 ∈ 1, 2, ..., 𝑘𝑚𝑎𝑥 , using L-BFGS (Quasi-Newton Method), an approximate

Hessian matrix 𝐻𝑘 is constructed so that [5]:

d𝑘 = −𝐻−1
𝑘

(d𝐽
d𝜶

)𝑘 (2.19)

A one-dimensional search is performed along direction d𝑘 with a step size of 𝛽𝑘,𝑚 (𝑚 ∈
1, 2, ...,𝑚𝑚𝑎𝑥), through which the optimal step size 𝛽∗

𝑘
is determined:

min

𝛽
𝐽 (𝑓𝑘 ,𝜶 𝑘 + 𝛽𝑘,𝑚 · d𝑘) (2.20)

The variables are then updated accordingly:

𝜶 𝑘+1 = 𝛽
∗
𝑘
· d𝑘 (2.21)

The computed solution is then substituted back into equations (2.3), (2.8 or 2.14) and (2.16),

then (d𝐽
d𝜶)𝑘+1 and 𝐻𝑘 is updated once more. These steps are repeated until 𝐽 (𝑓𝑘 ,𝜶 𝑘) < 𝜀 or

(d𝐽
d𝜶)𝑘 < 𝜀 or 𝑘 = 𝑘𝑚𝑎𝑥 , where 𝜀 is a user-specified threshold.

7

2 Problem Statement

2.2 Geometry and Boundary Conditions

The number of materials in the model is shown in Fig. 3.

Figure 3. Distribution of material numbers (MN)

In primal mode, the fluid is simulated using the homogenized lattice BGK-Boltzmann method.

MN = 1: Flow

MN = 2: Boundary (BounceBack boundary)

MN = 3: Poiseuille inflow (InterpolatedVelocity boundary)

MN = 4: Outflow (InterpolatedPressure boundary)

MN = 6: Flow (porosity adjustment zone)

MN = 7: Flow (inlet pressure measurement zone)

MN = 8: Flow (outlet pressure measurement zone)

In dual mode, the fluid is simulated using the adjoint homogenized lattice BGK-Boltzmann

method.

MN = 1, 6, 7, 8: Flow

MN = 2, 3, 4: Boundary (BounceBack boundary)

8

3 Results and Discussion

Parameters can be modified by editing the file:

release-1.8.1/Examples/optimization/PipeBendSolver2d/parameter.xml

Functions and geometry can be modified by editing the file:

release-1.8.1/Examples/optimization/PipeBendSolver2d/pipeBend2d.cpp

3.1 Numerical Stability Analysis

The analysis of numerical stability is based on whether stable solutions can be obtained in

the model under different Reynolds numbers and resolutions. In this case, the model uses the

pressure drop as the objective function.

Figure 4. Numerical stability for different Reynolds numbers (Re) and resolutions (N)

As shown in Fig. 4, with the increase of the Reynolds number, a higher resolution is required

for the model to reach a steady state. This is because, according to Equations (2.1) and (3.1),

as the Reynolds number Re increases (which corresponds to a smaller kinematic viscosity 𝜈),

the physical time step Δ𝑡 of the model becomes larger when Δ𝑥 = L/N remains constant. To

9

3 Results and Discussion

reduce the physical time step Δ𝑡 (i.e., to make 𝑢𝑙𝑏 = 𝑢𝑝ℎ𝑦𝑠 · Δ𝑡/Δ𝑥 smaller), the resolution N

must be increased to decrease Δ𝑥 , thereby achieving the steady state.

𝜏 − 0.5 =
𝜈.Δ𝑡

𝑐2𝑠 .Δ𝑥2
which 𝜏 = 0.525 (3.1)

In addition, as seen in Figure 4, the boundary line that determines the steady state appears to

be approximately linear as shown in (3.2).

N
∗ = 0.1985 · Re∗ + 6.88 (3.2)

3.2 Influence of Resolution

To investigate the effect of different resolution N on the optimization model, I will fix the

Reynolds number Re at 30 and then test the model by selecting resolutionN ∈ {20, 30, 40, 50, 60}.
In this case, the model uses the pressure drop as the objective function. The results are shown

in Table 3.1 and Fig. 5.

Resolution N Pressure drop Δ𝑝/Pa Total dissipation 𝜀/(W/m)

20 0.0103152 0.0143624

30 0.0089949 0.0120357

40 0.0086677 0.0113242

50 0.0084641 0.0108933

60 0.0085612 0.0101771

Table 3.1: Pressure drop and total dissipation for different resolution N

Figure 6. Distribution of velocity ∥u∥ for different resolution N

10

3 Results and Discussion

As shown in Table 3.1 and Fig. 5, the pressure drop and total dissipation obtained at different

resolutions are not the same. This is because the porosity P is related to the lattice size Δ𝑥 , as
described by (2.5). In addition, as the resolution N increases, both the pressure drop Δ𝑝 and the

total dissipation 𝜀 decrease.

3.3 Influence of Reynolds Number

To investigate the effect of the Reynolds number on the results, the resolution N = 60 was

chosen, which is capable of simulating a wide range of Reynolds numbers. The Reynolds

number was set to Re ∈ {30, 100, 260}. In this case, the model uses the pressure drop as the

objective function. The results are shown in Table 3.2 and Figure 6.

Reynolds number Re Pressure drop Δ𝑝/Pa Total dissipation 𝜀/(W/m)

30 0.0085612 0.0101771

100 0.0030890 0.0045732

260 0.0014959 0.0028059

Table 3.2: Pressure drop and total dissipation for different Reynolds number Re

Figure 6. Distribution of velocity ∥u∥ for different Reynolds number Re

As shown in Table 3.2 and Figure 6, with the increase of the Reynolds number, both the pressure

drop and the total dissipation decrease continuously. This is because as the Reynolds number

increases, the kinematic viscosity of the fluid decreases, which leads to smaller viscous dissipa-

tion caused by viscous forces. According to (2.8), this results in a lower total dissipation. For the

pressure drop, this can be explained as follows: according to the conservation of momentum of

the incompressible homogenized Navier–Stokes equations shown below, a smaller kinematic

viscosity leads to a smaller stress tensor. When the velocity remains unchanged, this results in

a smaller pressure gradient, which means the pressure drop decreases [4].

(u · ∇)u = −∇𝑝 + 𝜈Δu + 𝜈𝐾 (𝛼)−1u (3.3)

In addition, it can be observed that as the Reynolds number increases, the optimized channel

becomes progressively narrower.

11

3 Results and Discussion

3.4 Investigation of Different Objective Function

To investigate the effect of different objective functions on the model, the resolution N = 30 and

the Reynolds number Re ∈ {10, 30, 100} were selected for comparison. The results are shown

in Table 3.3 and Fig. 7.

Objective Pressure drop Total dissipation

Re Δ𝑝/Pa 𝜀/(W/m) Δ𝑝/Pa 𝜀/(W/m)

10 0.0231601 0.0287334 0.0328625 0.0016036

30 0.0089949 0.0120357 0.0138446 0.0013146

100 0.0035485 0.0055066 0.0065513 0.0010814

Table 3.3: Pressure drop and total dissipation for different objective function

Figure 7. Distribution of velocity ∥u∥ for different objective function

From the results, it can be seen that the minimum values obtained vary depending on the

choice of objective function. For example, when the objective function is the pressure drop,

a lower pressure drop can be achieved. In addition, as shown in the figure, when the total

dissipation is used as the objective function, the final geometry of the bend becomes smoother,

and the area of the simulated bend is smaller.

3.5 Investigation of Different Design Domain

As shown in Figure 1, to reduce computational cost, the model’s design domain has two

triangular regions removed on either side. To investigate the effect of different design domains

12

3 Results and Discussion

on the simulation, the design domain is restored to a full square for comparison. Among them,

the resolution N = 30 and the Reynolds number Re ∈ {10, 30, 100} were selected for comparison,

and the model uses the pressure drop as the objective function. The results are shown in Table

3.4 and Fig. 8.

Domain Hexagon domain Square domain

Re Δ𝑝/Pa 𝜀/(W/m) Δ𝑝/Pa 𝜀/(W/m)

10 0.0231601 0.0287334 0.0214632 0.0269669

30 0.0089949 0.0120357 0.0079775 0.0110939

100 0.0035485 0.0055066 0.0031187 0.0051985

Table 3.4: Pressure drop and total dissipation for different design domain

Figure 8. Distribution of velocity ∥u∥ for different design domain

From the results, it can be seen that in the uncut square design domain, smaller pressure drop

and total dissipation are achieved. This indicates that under these experimental conditions,

the cut domain affects the minimum value of the objective function. The geometry shown in

the figure also reveals that, in the square domain, the fluid occupies a larger area, extending

beyond the original cut boundary.

3.6 Investigation of Different Geometry

To explore the performance of this topology optimization approach with other geometric

configurations, three different shapes were selected:

13

3 Results and Discussion

Geometry 1: the outlet pipe located on the right side.

Geometry 2: two outlet pipes located on the right side.

Geometry 3: two outlet pipes located on the top and bottom sides.

Here, the resolution N = 30 and Reynolds number Re = 100 are used, with the pressure drop as

the objective function, while keeping other parameters unchanged.

Modify the release-1.8.1/Examples/optimization/PipeBendSolver2d.

Figure 9. Distribution of velocity ∥u∥ for Geometry 1

For geometry 1, modified code on lines 145-146 and 177-185:

145: Vector<T,2> origin(-params.inflowLength, -params.outflowLength);

146: Vector<T,2> extend(params.lengthX + params.inflowLength, params.lengthY

+ params.outflowLength);

177: origin= Vector<T,2>(params.lengthX, params.lengthY - params.inflowY

- params.outflowRadius);

178: extend = Vector<T,2>(params.L, 2. * params.outflowRadius);

179: IndicatorCuboid2D<T> outflow(extend, origin);

180: origin[1] = -.5*params.L;

181: std::shared_ptr<IndicatorF2D<T> > objectiveDomainOutflow

182: = std::make_shared<IndicatorCuboid2D<T> >(extend, origin);

183: origin = Vector<T,2>(params.lengthX, params.lengthY - params.inflowY

- params.outflowRadius - params.L);

184: extend = Vector<T,2>(params.outflowLength + params.L,

2.*params.outflowRadius + 2*params.L);

185: IndicatorCuboid2D<T> extendedOutflow(extend, origin);

Figure 10. Distribution of velocity ∥u∥ for Geometry 2

14

3 Results and Discussion

For geometry 2, modified code on lines 145-146 and 177-194:

145: Vector<T,2> origin(-params.inflowLength, -params.outflowLength);

146: Vector<T,2> extend(params.lengthX + params.inflowLength, params.lengthY

+ params.outflowLength);

177: origin= Vector<T,2>((params.lengthX + params.outflowLength -.5*params.L,

params.lengthY - params.inflowY - params.outflowRadius);

178: extend = Vector<T,2>(params.L, 2. * params.outflowRadius);

179: IndicatorCuboid2D<T> outflow(extend, origin);

180: origin[0] = params.lengthX -.5*params.L;

181: std::shared_ptr<IndicatorF2D<T> > objectiveDomainOutflow

182: = std::make_shared<IndicatorCuboid2D<T> >(extend, origin);

183: origin = Vector<T,2>(params.lengthX -.5*params.L, params.lengthY

- params.inflowY - params.outflowRadius - params.L);

184: extend = Vector<T,2>(params.outflowLength + params.L,

2.*params.outflowRadius + 2*params.L);

185: IndicatorCuboid2D<T> extendedOutflow(extend, origin);

187: origin = Vector<T,2>(params.lengthX + params.outflowLength

-.5*params.L, params.inflowY - params.outflowRadius);

188: extend = Vector<T,2>(params.L, 2. * params.outflowRadius);

189: IndicatorCuboid2D<T> outflow(extend, origin);

190: origin[0] = params.lengthX -.5*params.L;

191: std::shared_ptr<IndicatorF2D<T> > objectiveDomainOutflow

192: = std::make_shared<IndicatorCuboid2D<T> >(extend, origin);

193: origin = Vector<T,2>(params.lengthX -.5*params.L, params.inflowY

- params.outflowRadius - params.L);

194: extend = Vector<T,2>(params.outflowLength + params.L,

2.*params.outflowRadius + 2*params.L);

195: IndicatorCuboid2D<T> extendedOutflow(extend, origin);

Figure 11. Distribution of velocity ∥u∥ for Geometry 3

(The left figure shows the velocity distribution at the first iteration step, while the right figure

shows the velocity distribution at the final iteration step)

15

3 Results and Discussion

For geometry 3, modified code on lines 145-146 and 177-194:

145: Vector<T,2> origin(-params.inflowLength, -params.outflowLength);

146: Vector<T,2> extend(params.lengthX + params.inflowLength, params.lengthY

+ 2 * params.outflowLength);

177: origin = Vector<T,2>(params.outflowX - params.outflowRadius,

-params.outflowLength -.5*params.L);

178: extend = Vector<T,2>(2. * params.outflowRadius, params.L);

179: IndicatorCuboid2D<T> outflow(extend, origin);

180: origin[1] = -.5*params.L;

181: std::shared_ptr<IndicatorF2D<T> > objectiveDomainOutflow

182: = std::make_shared<IndicatorCuboid2D<T> >(extend, origin);

183: origin = Vector<T,2>(params.outflowX - params.outflowRadius - params.L,

-params.outflowLength -.5*params.L);

184: 2.*params.outflowRadius + 2*params.L, params.outflowLength

+ params.L);

185: IndicatorCuboid2D<T> extendedOutflow(extend, origin);

187: origin = Vector<T,2>(params.outflowX - params.outflowRadius,

params.lengthY + params.outflowLength -.5*params.L);

188: extend = Vector<T,2>(2. * params.outflowRadius, params.L);

189: IndicatorCuboid2D<T> outflow(extend, origin);

190: origin[1] = -.5*params.L;

191: std::shared_ptr<IndicatorF2D<T> > objectiveDomainOutflow

192: = std::make_shared<IndicatorCuboid2D<T> >(extend, origin);

193: origin = Vector<T,2>(params.outflowX - params.outflowRadius - params.L,

params.lengthY -.5*params.L);

194: 2.*params.outflowRadius + 2*params.L, params.outflowLength

+ params.L);

195: IndicatorCuboid2D<T> extendedOutflow(extend, origin);

As shown in Fig. 11, it is worth noting that under the conditions of Geometry 3, the optimized

channel only extends toward one of the outlets.

16

4 Conclusion

The conclusions of this report can be summarized in the following 5 points:

• As the Reynolds number increases, a higher resolution is required to stabilize the model,

and this relationship is approximately linear.

• At the same Reynolds number, when using pressure drop as the objective function, both

the pressure drop and the total dissipation decrease as the resolution increases.

• At the same resolution, when using pressure drop as the objective function, both the

pressure drop and the total dissipation decrease as the Reynolds number increases.

• When the total dissipation is used as the objective function, the resulting total dissipation

is lower, and the optimized channel geometry becomes smoother with a smaller area.

• A trimmed design domain can limit the final optimization result; in an untrimmed square

domain, lower pressure drop and total dissipation can be achieved.

17

References

[1] T Krüger et al. The Lattice Boltzmann method. Springer International Publishing Switzer-
land, 2017. doi: 10.1007/978-3-319-44649-3.

[2] MP Bendsøe and O Sigmund. Topology optimization: the ory, methods, and applications.
Springer Berlin, Heidelberg, 2003. doi: 10.1007/978-3-662-05086-6.

[3] M J Krause, G Thäter, and V Heuveline. “Adjoint-based fluid flow control and optimisation

with lattice boltzmann methods”. In: Computers & Mathematics with Applications 65 (6)
(2013), pp. 945–960. doi: 10.1016/j.camwa.2012.08.007.

[4] M J Krause et al. “Particle flow simulations with homogenised lattice boltzmann methods”.

In: Particuology 34 (2017), pp. 1–13. doi: 10.1016/j.partic.2016.11.001.

[5] R H Byrd et al. “A limited memory algorithm for bound constrained optimization”. In:

SIAM Journal on Scientific Computing 16 (5) (1995), pp. 1190–1208. doi: 10.1137/0916069.

18

https://doi.org/10.1007/978-3-319-44649-3
https://doi.org/10.1007/978-3-662-05086-6
https://doi.org/10.1016/j.camwa.2012.08.007
https://doi.org/10.1016/j.partic.2016.11.001
https://doi.org/10.1137/0916069

	Introduction
	Problem Statement
	Governing Equations
	Constraint Equation
	Objective Function
	Adjoint Method
	Gradient-based Line Search Algorithm

	Geometry and Boundary Conditions

	Results and Discussion
	Numerical Stability Analysis
	Influence of Resolution
	Influence of Reynolds Number
	Investigation of Different Objective Function
	Investigation of Different Design Domain
	Investigation of Different Geometry

	Conclusion
	References

