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1 Introduction

In the process of fluid transportation, the optimized design of bent pipes can effectively reduce
energy loss and pressure drop of the fluid. Among them, the optimization process of bent pipes
can be addressed using numerical simulation methods. The model used in this report is based
on the lattice Boltzmann method (LBM) and topology optimization (TO) [1][2]. The LBM is a
numerical approach for simulating fluid flow by modeling particle collisions and propagation
on a lattice grid. TO is a mathematical method for designing optimal structures by optimizing
the distribution of material within a given design domain.

In addition, to determine the optimal topology of the bent pipe, this model employs a homog-
enized lattice Boltzmann method with a porosity parameter P [3]. Meanwhile, to find the
minimum value of the objective function, this report uses the adjoint method to construct the
adjoint homogenized lattice Boltzmann equations [4]. Finally, a gradient-based line search
algorithm is applied to iteratively solve for the minimum of the objective function [5].

This report will explore the numerical stability and the results of topology optimization simu-
lations for different resolutions, Reynolds numbers, objective functions, shapes of the design
domain, and positions of inlet and outlet in order to analyze the characteristics of this topology
optimization model and its optimization results.



2 Problem Statement

In this report, a 2D simplified model of a bent pipe is investigated, as shown in Fig. 1. The
design domain is defined as a square with a side length of L, from which two right-angled
isosceles triangles with leg lengths of L/2 are removed. The purpose of removing these two
triangles is to reduce the computational domain, thereby decreasing the simulation time. Here,
L = 0.5 m. The inlet boundary condition T}, is defined as a fixed inflow rate u = 0.06 m/s.
The outlet boundary condition I, is set as an outlet with a pressure value of 0.
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Figure 1. Design domain and boundary conditions

In the initial parameter settings, the fluid density p = 1 kg/m?, and the kinematic viscosity
v =0.001 m?/s. According to Eq. (2.1), the Reynolds number Re = 30. The model resolution
N = 20.

ulL

Re = — (2.1)
v

2.1 Governing Equations

In this model, the topology optimization problem can be formulated as follows:

mcin J(f,a) subjectto G(f,a) =0 (2.2)

where f is the state, @ is the vector of design variables, J is an objective function, and G is the
equality constraint.



2 Problem Statement

2.1.1 Constraint Equation

Based on the LBM method, the constraint G(f, &) = 0 can be expressed as the homogenized
lattice BGK-Boltzmann equation [3]:

At
filx+eAt,t+At) = fi(x, 1) + — | fi(x, 1) = fA(x1)| =0 in Qax X Ip; (2.3)
T >

where 7 € R* is the relaxation time, e; € R? for i € 0,1, ..., 8 in the velocity model D2Q9, as
shown in Fig. 2, f; : Qay X Ip; — R is the particle distribution function, and fii‘f : QaxXIn; — R
is the discrete equilibrium distribution function for the homogenized BGK-Boltzmann equation,
which is expressed as:

eq [1 L& Pu . (e; - Pu)? _ Pu- Pu] (2.4)

cp = Wip
L.p c? 2ct 2c?

where w; are weights corresponding to the D2Q9 model as shown in Fig. 2, p : Q X I — R* is
the macroscopic density, u : Q X I — R? is the macroscopic velocity, the lattice speed of sound
is ¢s = At/V3Ax, and the porosity distribution is P : Q — [0, 1], which represents the fluid
permeability at point x; when P(x) is 0, it means the point is impermeable, and when P(x) is 1,
it means the fluid can pass through completely. Its definition is as follows [4]:

eO{

e* + Gy

P(a) = with G, = Ax?vr (2.5)

In addition, the macroscopic density p and velocity u can be represented as follows:

8
pxt)=) f (2.6)
1 1—80
u(x,t) = > Z e.f; (2.7)
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Figure 2.The distribution of e¢; and w; in D2Q9 model




2 Problem Statement

2.1.2 Objective Function

The objective function J( f, ) of this model can be chosen as either the total dissipation, which
includes viscous dissipation energy and porous dissipation, or the pressure drop. When the
objective function J is defined as the total dissipation, its expression is as follows:

](fs a) = Z [gvisc(x) + Eporous(x)] ta- VV

re) ref

in QAx (2.8)

where ¢4 is viscous dissipation, £,orous is porous dissipation, V' is the total material volume,
and Vier = 0.25 is the reference volume. The expression for viscous dissipation &yis is given as
follows:

2
1 1
evise(X) = =V | ———— | IT™9(x)? 2.9
) = 37| ) @9)
where IT"*4(x) is the non-equilibrium stress tensor, and its expression is as follows:

8

Mt = > eweiy(fi = £ (2.10)

i=0
where e;, is the component in the x direction of the i-th discrete velocity. e;, is defined similarly.
The expression for viscous dissipation &yisc is given as follows:

Eporous (X) =V - 1;((()2)2 (2.11)
where K : R — [0, 00) is the local permeability. It is defined as follows:
K(x) =e“+ Gy (2.12)
The total material volume V is given as follows:
V= Z P(x) - Ax? (2.13)

xeQ

When the objective function J is defined as the pressure drop, its expression is as follows:

I Y s Y p o

ref

in Qay (2.14)

XEQMN=7 x€QNN=8

where Q=7 is the region with MN (material number) = 7. Qpn=s is defined similarly.

2.1.3 Adjoint Method

In order to get the minimum J, that is, to achieve g—i = 0 using gradient-based optimization,

the adjoint method is used here. By introducing an adjoint variable A, the adjoint equation can
be constructed as follows:

oJf.a) , Gf.a)

oF > (2.15)



2 Problem Statement

here, A - ‘;—G is defined as a new function ¢. By coupling the adjoint equations with the
homogenized lattice BGK-Boltzmann equation with the method proposed by Krause et al., the
following expression for the discrete adjoint homogenized lattice BGK-Boltzmann equation
can be obtained [3]:

At )
Gi(x + e AL, t+ At) — ¢i(x, 1) + — (i — p;5) + ol _ 0 in Qpx X In; (2.16)
T g)

of

The definition of discrete adjoint equilibrium distribution ¢f?, is given as follows:
13
(%, 1) = > Z ¢;(1+3P(e; — Pu)(e; — u)) fy?(x, ) (2.17)
Jj=0

After solving for g—G in (2.3), % in (2.8 or 2.14) and A in (2.16), we substitute them into the

(04
following equation to obtain the value of g—i:

d_]—ﬂ_i_/l.ﬁ

= 2.18
da Ja o ( )

2.1.4 Gradient-based Line Search Algorithm

To solve for <L = 0, the gradient-based line search algorithm is used here. After specifying the
da

initial values of &, maximal number of iterations, the iterative process to solve for ;—i =0 be-
gins. At iteration step k € 1,2, ..., kjqx, using L-BFGS (Quasi-Newton Method), an approximate
Hessian matrix Hy is constructed so that [5]:

d
di = —Hk‘l(é)k (2.19)

A one-dimensional search is performed along direction dy with a step size of fi,, (m €
1,2, ..., Mygy), through which the optimal step size ﬂ;: is determined:

mﬁin J(fis @i + B - di) (2.20)

The variables are then updated accordingly:

i = B - di (2.21)

The computed solution is then substituted back into equations (2.3), (2.8 or 2.14) and (2.16),
then (g—i)kﬂ and Hy is updated once more. These steps are repeated until J(fi, ay) < € or

((%)k < e or k = kpqx, Where ¢ is a user-specified threshold.



2 Problem Statement

2.2 Geometry and Boundary Conditions

The number of materials in the model is shown in Fig. 3.
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Figure 3. Distribution of material numbers (MN)

In primal mode, the fluid is simulated using the homogenized lattice BGK-Boltzmann method.

MN = 1: Flow

MN = 2: Boundary (BounceBack boundary)

MN = 3: Poiseuille inflow (InterpolatedVelocity boundary)
MN = 4: Outflow (InterpolatedPressure boundary)

MN = 6: Flow (porosity adjustment zone)

MN = 7: Flow (inlet pressure measurement zone)

MN = 8: Flow (outlet pressure measurement zone)

In dual mode, the fluid is simulated using the adjoint homogenized lattice BGK-Boltzmann
method.

MN =1, 6, 7, 8: Flow
MN = 2, 3, 4: Boundary (BounceBack boundary)



3 Results and Discussion

Parameters can be modified by editing the file:
release-1.8.1/Examples/optimization/PipeBendSolver2d/parameter.xml
Functions and geometry can be modified by editing the file:
release-1.8.1/Examples/optimization/PipeBendSolver2d/pipeBend2d. cpp

3.1 Numerical Stability Analysis

The analysis of numerical stability is based on whether stable solutions can be obtained in
the model under different Reynolds numbers and resolutions. In this case, the model uses the
pressure drop as the objective function.
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Figure 4. Numerical stability for different Reynolds numbers (Re) and resolutions (N)

As shown in Fig. 4, with the increase of the Reynolds number, a higher resolution is required
for the model to reach a steady state. This is because, according to Equations (2.1) and (3.1),
as the Reynolds number Re increases (which corresponds to a smaller kinematic viscosity v),
the physical time step At of the model becomes larger when Ax = L/N remains constant. To



3 Results and Discussion

reduce the physical time step At (i.e., to make uy, = uppys - At/Ax smaller), the resolution N
must be increased to decrease Ax, thereby achieving the steady state.

v.At

c2. Ax?

7—0.5= which 7 = 0.525 (3.1)

In addition, as seen in Figure 4, the boundary line that determines the steady state appears to
be approximately linear as shown in (3.2).

N* = 0.1985 - Re* + 6.88 (3.2)

3.2 Influence of Resolution

To investigate the effect of different resolution N on the optimization model, I will fix the
Reynolds number Re at 30 and then test the model by selecting resolutionN € {20, 30, 40, 50, 60}.
In this case, the model uses the pressure drop as the objective function. The results are shown
in Table 3.1 and Fig. 5.

Resolution N Pressure drop Ap/Pa Total dissipation ¢/(W/m)
20 0.0103152 0.0143624
30 0.0089949 0.0120357
40 0.0086677 0.0113242
50 0.0084641 0.0108933
60 0.0085612 0.0101771

Table 3.1: Pressure drop and total dissipation for different resolution N
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Figure 6. Distribution of velocity ||ul| for different resolution N
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3 Results and Discussion

As shown in Table 3.1 and Fig. 5, the pressure drop and total dissipation obtained at different
resolutions are not the same. This is because the porosity P is related to the lattice size Ax, as
described by (2.5). In addition, as the resolution N increases, both the pressure drop Ap and the
total dissipation ¢ decrease.

3.3 Influence of Reynolds Number

To investigate the effect of the Reynolds number on the results, the resolution N = 60 was
chosen, which is capable of simulating a wide range of Reynolds numbers. The Reynolds
number was set to Re € {30, 100, 260}. In this case, the model uses the pressure drop as the
objective function. The results are shown in Table 3.2 and Figure 6.

Reynolds number Re Pressure drop Ap/Pa Total dissipation ¢/(W/m)
30 0.0085612 0.0101771
100 0.0030890 0.0045732
260 0.0014959 0.0028059

Table 3.2: Pressure drop and total dissipation for different Reynolds number Re
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Figure 6. Distribution of velocity ||ul| for different Reynolds number Re

As shown in Table 3.2 and Figure 6, with the increase of the Reynolds number, both the pressure
drop and the total dissipation decrease continuously. This is because as the Reynolds number
increases, the kinematic viscosity of the fluid decreases, which leads to smaller viscous dissipa-
tion caused by viscous forces. According to (2.8), this results in a lower total dissipation. For the
pressure drop, this can be explained as follows: according to the conservation of momentum of
the incompressible homogenized Navier-Stokes equations shown below, a smaller kinematic
viscosity leads to a smaller stress tensor. When the velocity remains unchanged, this results in
a smaller pressure gradient, which means the pressure drop decreases [4].

(u-V)u=-Vp+vAu+vK(ax) 'u (3.3)

In addition, it can be observed that as the Reynolds number increases, the optimized channel
becomes progressively narrower.

11



3 Results and Discussion

3.4 Investigation of Different Objective Function

To investigate the effect of different objective functions on the model, the resolution N = 30 and
the Reynolds number Re € {10, 30, 100} were selected for comparison. The results are shown
in Table 3.3 and Fig. 7.

Objective Pressure drop Total dissipation
Re Ap/Pa &/(W/m) Ap/Pa ¢/(W/m)
10 0.0231601 0.0287334 0.0328625 0.0016036
30 0.0089949 0.0120357 0.0138446 0.0013146
100 0.0035485 0.0055066 0.0065513 0.0010814

1.0e-01
0.09

Table 3.3: Pressure drop and total dissipation for different objective function
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Figure 7. Distribution of velocity ||ul| for different objective function

From the results, it can be seen that the minimum values obtained vary depending on the
choice of objective function. For example, when the objective function is the pressure drop,
a lower pressure drop can be achieved. In addition, as shown in the figure, when the total
dissipation is used as the objective function, the final geometry of the bend becomes smoother,
and the area of the simulated bend is smaller.

3.5 Investigation of Different Design Domain

As shown in Figure 1, to reduce computational cost, the model’s design domain has two
triangular regions removed on either side. To investigate the effect of different design domains

12



3 Results and Discussion

on the simulation, the design domain is restored to a full square for comparison. Among them,
the resolution N = 30 and the Reynolds number Re € {10, 30, 100} were selected for comparison,
and the model uses the pressure drop as the objective function. The results are shown in Table
3.4 and Fig. 8.

Domain Hexagon domain Square domain

Re Ap/Pa e/(W/m) Ap/Pa e/(W/m)
10 0.0231601 0.0287334 0.0214632 0.0269669
30 0.0089949 0.0120357 0.0079775 0.0110939
100 0.0035485 0.0055066 0.0031187 0.0051985

Table 3.4: Pressure drop and total dissipation for different design domain
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Figure 8. Distribution of velocity ||u|| for different design domain

From the results, it can be seen that in the uncut square design domain, smaller pressure drop
and total dissipation are achieved. This indicates that under these experimental conditions,
the cut domain affects the minimum value of the objective function. The geometry shown in
the figure also reveals that, in the square domain, the fluid occupies a larger area, extending
beyond the original cut boundary.

3.6 Investigation of Different Geometry

To explore the performance of this topology optimization approach with other geometric
configurations, three different shapes were selected:
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3 Results and Discussion

Geometry 1: the outlet pipe located on the right side.
Geometry 2: two outlet pipes located on the right side.
Geometry 3: two outlet pipes located on the top and bottom sides.

Here, the resolution N = 30 and Reynolds number Re = 100 are used, with the pressure drop as
the objective function, while keeping other parameters unchanged.

Modify the release-1.8.1/Examples/optimization/PipeBendSolver2d.
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Figure 9. Distribution of velocity ||u|| for Geometry 1

For geometry 1, modified code on lines 145-146 and 177-185:

145: Vector<T,2> origin(-params.inflowLength, -params.outflowlLength);

146: Vector<T,2> extend(params.lengthX + params.inflowlLength, params.lengthY
+ params.outflowlLength);

177: origin= Vector<T,2>( params.lengthX, params.lengthY - params.inflowY
- params.outflowRadius );

178: extend = Vector<T,2>( params.L, 2. * params.outflowRadius );

179: IndicatorCuboid2D<T> outflow( extend, origin );

180: origin[1l] = -.5xparams.L;

181: std: :shared_ptr<IndicatorF2D<T> > objectiveDomainOutflow

182: = std: :make_shared<IndicatorCuboid2D<T> >( extend, origin );

183: origin = Vector<T,2>( params.lengthX, params.lengthY - params.inflowY
- params.outflowRadius - params.L );

184: extend = Vector<T,2>( params.outflowLength + params.L,
2.xparams.outflowRadius + 2*params.L );

185: IndicatorCuboid2D<T> extendedOutflow( extend, origin );
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Figure 10. Distribution of velocity ||u|| for Geometry 2



3 Results and Discussion

For geometry 2, modified code on lines 145-146 and 177-194:

145: Vector<T,2> origin(-params.inflowLength, -params.outflowlLength);
146: Vector<T,2> extend(params.lengthX + params.inflowlLength, params.lengthY
+ params.outflowLength);

177: origin= Vector<T,2>( ( params.lengthX + params.outflowLength -.5%params.L,
params.lengthY - params.inflowY - params.outflowRadius );

178: extend = Vector<T,2>( params.L, 2. * params.outflowRadius );

179: IndicatorCuboid2D<T> outflow( extend, origin );

180: origin[0] = params.lengthX -.5xparams.L;

181: std: :shared_ptr<IndicatorF2D<T> > objectiveDomainOutflow

182: = std: :make_shared<IndicatorCuboid2D<T> >( extend, origin );

183: origin = Vector<T,2>( params.lengthX -.5%params.L, params.lengthY
- params.inflowY - params.outflowRadius - params.L );

184: extend = Vector<T,2>( params.outflowLength + params.L,
2.xparams.outflowRadius + 2xparams.L );

185: IndicatorCuboid2D<T> extendedOutflow( extend, origin );

187: origin = Vector<T,2>( params.lengthX + params.outflowLength
-.5xparams.L, params.inflowY - params.outflowRadius );

188: extend = Vector<T,2>( params.L, 2. * params.outflowRadius );

189: IndicatorCuboid2D<T> outflow( extend, origin );

190: origin[0] = params.lengthX -.5xparams.L;

191: std: :shared_ptr<IndicatorF2D<T> > objectiveDomainOutflow

192: = std: :make_shared<IndicatorCuboid2D<T> >( extend, origin );

193: origin = Vector<T,2>( params.lengthX -.5%params.L, params.inflowY
- params.outflowRadius - params.L);

194: extend = Vector<T,2>( params.outflowLength + params.L,
2.xparams.outflowRadius + 2*params.L );

195: IndicatorCuboid2D<T> extendedOutflow( extend, origin );
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Figure 11. Distribution of velocity ||u|| for Geometry 3
(The left figure shows the velocity distribution at the first iteration step, while the right figure
shows the velocity distribution at the final iteration step)
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3 Results and Discussion

For geometry 3, modified code on lines 145-146 and 177-194:

145: Vector<T,2> origin(-params.inflowLength, -params.outflowlLength);

146: Vector<T,2> extend(params.lengthX + params.inflowlLength, params.lengthY
+ 2 x params.outflowLength);

177: origin = Vector<T,2>( params.outflowX - params.outflowRadius,
-params.outflowLength -.5xparams.L );

178: extend = Vector<T,2>( 2. * params.outflowRadius, params.L );

179: IndicatorCuboid2D<T> outflow( extend, origin );

180: origin[1l] = -.5xparams.L;

181: std: :shared_ptr<IndicatorF2D<T> > objectiveDomainOutflow

182: = std: :make_shared<IndicatorCuboid2D<T> >( extend, origin );

183: origin = Vector<T,2>( params.outflowX - params.outflowRadius - params.L,
-params.outflowLength -.5xparams.L );

184: 2.*params.outflowRadius + 2xparams.L, params.outflowLength

+ params.L );

185: IndicatorCuboid2D<T> extendedOutflow( extend, origin );

187: origin = Vector<T,2>( params.outflowX - params.outflowRadius,
params.lengthY + params.outflowLength -.5%params.L );

188: extend = Vector<T,2>( 2. * params.outflowRadius, params.L );

189: IndicatorCuboid2D<T> outflow( extend, origin );

190: origin[1] = -.5xparams.L;

191: std: :shared_ptr<IndicatorF2D<T> > objectiveDomainOutflow

192: = std: :make_shared<IndicatorCuboid2D<T> >( extend, origin );

193: origin = Vector<T,2>( params.outflowX - params.outflowRadius - params.L,
params.lengthY -.5xparams.L );

194: 2.+params.outflowRadius + 2xparams.L, params.outflowLength

+ params.L );

195: IndicatorCuboid2D<T> extendedOutflow( extend, origin );

As shown in Fig. 11, it is worth noting that under the conditions of Geometry 3, the optimized
channel only extends toward one of the outlets.
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4 Conclusion

The conclusions of this report can be summarized in the following 5 points:

« As the Reynolds number increases, a higher resolution is required to stabilize the model,
and this relationship is approximately linear.

« At the same Reynolds number, when using pressure drop as the objective function, both
the pressure drop and the total dissipation decrease as the resolution increases.

« At the same resolution, when using pressure drop as the objective function, both the
pressure drop and the total dissipation decrease as the Reynolds number increases.

« When the total dissipation is used as the objective function, the resulting total dissipation
is lower, and the optimized channel geometry becomes smoother with a smaller area.

« A trimmed design domain can limit the final optimization result; in an untrimmed square
domain, lower pressure drop and total dissipation can be achieved.

17
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